Земляное питание растений. Питание растений минеральное: основные элементы и функции различных элементов для растений

ПР-это процесс поглощения из внешней среды и преобраз-я питат. в-в в соед-я, необходимые для жизнед-ти растений. Существует два типа пита-ния: автотрофный и симбиотрофный. В основном преобл. автотрофный, при к-ром растения сами обеспеч. себя неорг. эл-тами, N 2 и СО 2 . При симбиотрофном ПР растения тесно сожительствуют с другими организмами (симбионтами). Симбиоз высш. раст. бывает микотрофный и бактериотрофный.

Питание растений – усвоение неорганических соединений из окружающей среды и превращение их во внутренний фактор растительного организма в качестве органического вещества, используемого на образование структуры растений и на энергетическое обеспечение их функций. Существует два типа питания: автотрофный – усвоение минеральных солей, воды и углекислого газа и синтез из них органического вещества – и гетеротрофный – использование организмами готовых органических веществ. До начала 19 в. Существовала гумусовая теория, согласно которой сухая масса растений образуется из почвенного гумуса. Открытие фотосинтеза Сенебье и мине-рального питания Либихом выявили два основных источника питания – воздушный и почвенный. Фотосинтез – основной процесс, приводящий к образованию орг. вещества. Солнечная энергия в зеленых растениях, содержащих хлорофилл, превращается в химическую, используемую на синтез углеводов. Интенсивность процесса и накопление сухого вещества зависят от освещенности, со-держания углекислого газа, обеспеченности влагой и элементами питания. Растения усваивают углекислоту, поступающую из атмосферы, а основным путем поступления в растения воды, азота и зольных элементов служит корневое питание. Элементы поглощаются из почвы активной поверхностью корневой системы в виде ионов. Растения усваивают их не только из раствора, но и из поглощенного коллоидами состояния. Благодаря растворительной способности корневых выделений растения активно воздействуют на твердую фазу почвы, переводя поглощенные ионы в доступную форму.

Питание – это поступление минеральных веществ из окружающей среды в растение, где они используются для синтеза сложных органических соединений. Все задачи, по мнению Тимирязева, сводятся к определению и строгому выполнению условий питания растений.

Типы и виды питания:

1) Автотрофный – самостоятельное поглощение неорганических веществ и первичный синтез необходимых органических веществ.

2) Симбиотрофный – высшее растение тесно сожительствует с другими организмами (симбионтами)

наблюдается взаимное использование продуктов для питания.

Микотрофный (растение + грибы)

Бактериотрофный (растение + бактерии) особое значение Rhizobium + растение

Растения питаются через листья (воздушное питание) и через корни (корневое питание).

Воздушное питание = фотосинтез = ассимиляция СО2. Корневое – усвоение корнями воды и минеральных солей, а также незначительного количества органических веществ (Витамины, аминокислоты и др.) Эти виды питания тесно связаны, нарушение одного вызывает снижение интенсивности другого.

Питание растений – основополагающий процесс, благодаря которому обеспечивается не только собственное их существование, но и жизнь, процветание всех гетеротрофов, и прежде всего, благодаря присущим растениям процесса углеродотрофии и азотрофии. У растительных организмов питание особенное, что можно проиллюстрировать следующей схемой:

Почвенное (корневое) питание – это, с одной стороны, потребление воды с помощью корневой системы растения. Вода является важнейшей составной частью последних. Растения произошли из воды и всегда стремятся к воде.

Почвенное (корневое) питание – это, с другой стороны, потребление и усвоение необходимых минеральных солей.

Анализ элементарного состава растений показывает, что они в среднем содержат С - 45%, О - 42%, Н - 6,5%, N - 1,5% на сухую массу. В процессе сжигания эти элементы окисляются и улетучиваются. Остается зола. Растения черпают углерод из СО2 воздуха, кислород и водород из воды. Кислород также вовлекается в обмен в процессе дыхания. Азот и элементы, входящие в состав золы, поступают в растения через корневую систему из почвы в основном в виде минеральных соединений. Зеленые растения - автотрофы не только в том смысле, что источником углерода у них является СО2, но и в том, что они используют для построения органических веществ другие элементы в форме минеральных соединений. Питание растений азотом и другими необходимыми элементами привлекало издавна внимание.

Чем питаются растения? Дело в том, что для нормального роста и развития этих организмов необходимы особые условия. Какие именно? Об этом вы узнаете из нашей статьи.

Что такое питание

Осуществление процесса обмена веществ является признаком всех живых организмов. Его составной частью и является питание. Его суть заключается в поступлении веществ к тканям и органам, их преобразовании и усвоении. Чем питаются растения? Подобно другим существам, им необходима энергия, заключенная в связях сложных химических соединений. Особенностью большинства растений является то, что все необходимые элементы они получают из воздуха и почвы. Для человека знания о значении питания для растений имеет огромное значение, поскольку позволяют значительно увеличить урожайность.

Способы питания организмов

По типу питания организмы можно объединить в две группы. Это авто- и гетеротрофы. Представители первых самостоятельно синтезируют органические вещества. К ним относятся растения и некоторые виды бактерий. Для создания органики автотрофы используют разные виды энергии. В зависимости от этого различают фото- и хемотрофы. Растения и сине-зеленые водоросли в ходе биосинтеза используют энергию солнечного излучения. Некоторые виды бактерий в ходе питания окисляют различные минеральные соединения. Они относятся к группе хемотрофов.

Животные, грибы и часть бактерий питаются уже готовыми органическими соединениями, поглощая их разными способами. Такие организмы называют гетеротрофами.

В природе существуют необычные виды растений. И способ их питания может изменяться в зависимости от условий окружающей среды. Это миксотрофы. Они способны к фотосинтезу, а при необходимости могут поглощать и готовую органику. Их примерами являются росянка и эвгленовые водоросли.

Минеральное питание растений

Каждый огородник знает, что урожайность во многом определяется количеством влаги и плодородием почвы. Действительно, для роста растениям необходимы растворы минеральных солей, которые они поглощают при помощи корня. По элементам проводящей ткани они передвигаются по стеблю к листьям. Такой ток веществ называется восходящим. Это и есть почвенное питание растений.

Какие элементы являются самыми важными? Прежде всего это магний, кальций, фосфор, железо и сера. Это макроэлементы, которые необходимы растениям в больших количествах. Каждый из них незаменим. Не меньшее значение для развития корня и побега имеют микроэлементы. К ним относятся кобальт, медь, бор, цинк и молибден. В агротехнических целях эти компоненты вносятся в почву в качестве удобрений.

Особое значение для роста побега имеет азот. Если вы увидели, что листья и стебли растений на вашем участке начали желтеть и вянуть - это явный признак нехватки этого элемента. Достаточное количество азота содержит воздух. Он составляет практически 78% в этой газовой смеси. Но растения не способны усваивать атмосферный азот. Природными помощниками в этом вопросе являются нитрифицирующие бактерии. Они преобразуют атмосферный азот в растворимые соли. Их и поглощают растения из почвы вместе с водой. Человек вносит азот в виде различных удобрений - калийной селитры, карбамидов, сульфатов аммония. Добавлять в почву их необходимо весной, когда начинается формирование побега.

Эффективность минерального питания растений зависит от содержания в почве воды. Дело в том, что растения могут поглощать все необходимые им вещества только в растворенном виде. Поэтому в засушливой местности многие растения не выживают. Но чрезмерное увлажнение также не приносит пользы. Корни начинают загнивать и постепенно отмирают.

Важным компонентом почвы является воздух. Хорошая аэрация также является необходимым условием развития корня, а значит, и других частей растения. Рыхлению почвы способствует не только человек, но и ее обитатели. Дождевые черви и насекомые проделывают в ней многочисленные ходы. При этом они обогащают почву кислородом и перемещают органические вещества с ее поверхности вглубь.

Воздушное питание растений

Дыхание и фотосинтез являются противоположными процессами. Они являются жизненно необходимыми и в растении протекают одновременно. В чем суть воздушного питания растений? В листья поступает углекислый газ, который вступает в сложную многоступенчатую реакцию с другими неорганическими веществами. В результате образуется глюкоза, которую растения используют в качестве источника энергии. Этот процесс называется фотосинтезом.

Почвенное и воздушное питание растений тесно взаимосвязаны. Органика, которая образуется в листьях, поступает к подземным частям. И наоборот, водные растворы минеральных компонентов передвигаются из корня к побегу.

Что такое фотосинтез

Питание растений биология рассматривает в планетарном масштабе. В ходе фотосинтеза образуется не только моносахарид глюкоза, но и кислород. Этот газ необходим для дыхания не только животным, грибам и бактериям, но и самим растениям.

Процесс фотосинтеза происходит в два этапа: световой и темновой. Солнечная энергия поглощается зеленым пигментом хлорофиллом. В результате этого первоначально происходит фотолиз воды: под действием солнечного света она разлагается на кислород и водород. Далее осуществляется процесс восстановления углекислого газа. Для этого солнечный свет уже не нужен.

Необходимые условия

Чем питаются растения в ходе фотосинтеза? Этот процесс происходит в особых структурах клеток растений, которые называются пластидами хлоропластами. Они имеют зеленый цвет, обусловленный наличием красящих веществ - пигментов. Пластиды этого вида содержат хлорофилл.

Для протекания фотосинтеза необходимы вода и углекислый газ. Начинается химическая реакция только при наличии солнечного света. Углекислый газ проникает в растение через устьица листьев, а воду всасывают корни из почвы.

Насекомоядные

На примере этой группы организмов можно рассмотреть необычные способы питания растений. Этих представителей называют насекомоядными, или хищными. В природе их насчитывается более 600 тысяч видов.

Они имеют ловчие аппараты, с помощью которых охотятся на насекомых. При этом данные растения способны и к автотрофному питанию. Способность поглощать готовую органику делает их менее зависимыми от азота, содержащегося в почве.

Большинство хищных растений являются многолетними травами, иногда встречаются небольшие кустарники. Их типичными примерами являются росянка и пузырчатка. Самое крупное растение-хищник растет на территории Австралии. Это гигантский библис. Жертвами этого кустарника являются насекомые, ящерицы и даже лягушки.

Для охоты у них есть целый ряд приспособлений. Листья видоизменены в специальные ловчие органы. Они имеют железы, которые выделяют пищеварительные ферменты.

Питание - процесс поглощения и усвоения из окружающей среды необходимых для жизни веществ.

Процесс почвенного питания

Процессы поступления в организм растения растворов минеральных веществ из почвы и усвоения их клетками называют почвенным питанием. У большинства наземных растений оно происходит с помощью корня. В зоне всасывания корневые волоски поглощают воду и растворенные в ной минеральные вещества из почвы. Они тесно соприкасаются с комочками почвы и почвенным раствором. Слизь, образующаяся на поверхности корневых волосков, растворяет минеральные частицы почвы, облегчая их поглощение.

Поглощенные корневыми волосками вода и минеральные вещества поступают в проводящую зону корня. Здесь по сосудам проводящей ткани они под давлением поступают в стебель. Это давление называют корневым. Наличие корневого давления доказывает «плач» растений - выделение сока из поврежденного или перерезанного стебля. Особенно интенсивно сокодвижение происходит весной. У многих комнатных растений рано утром можно наблюдать выделение капелек воды но краям . Это явление тоже свидетельствует о корневом давлении.

Зависимость почвенного питания от внешней среды

Работа корней зависит от температуры почвы. При низких температурах всасывание воды корнями ослабевает и даже приостанавливается, корневое давление надает. Па почвенное питание растений оказывает влияние состав почвы, наличие в ней минеральных веществ. Установлено, что соединения азота, фосфора, необходимы растениям в больших количествах. Так, растения пшеницы на площади 1 га поглощают более 40 кг азота, 20 кг фосфора, 25 кг калия. Недостаток азота задерживает рост растения. При нехватке фосфора задерживается цветение и . Такие элементы, как железо, медь, цинк и др., требуются растению в очень малых количествах. Однако недостаток любого элемента в питании растений отрицательно сказывается на его развитии. В естественных природных условиях поглощенные из почвы минеральные вещества частично возвращаются с упавшими листьями. На полях, занятых сельскохозяйственными растениями, почва истощается, так как питательные вещества забирают с урожаем. Поэтому на поля весной и осенью вносят удобрения, обеспечивающие питание растений.

Особые способы питания растений

Некоторые растения приспособились восполнять недостаток элементов питания своеобразным способом - получать питательные вещества от других живых организмов.

Питание растений - это процесс поглощения и усвоения ими питательных веществ, необходимых для построения тканей и органов и осуществления всех жизненных функций. Питание - составная часть обмена веществ у растений.

Большинство высших растений в отличие от других организмов, например животных, строят свое тело из простых соединений - углекислого газа, воды, минеральных солей. Все необходимые элементы питания они получают из воздуха и почвы. Из воздуха через листья растения усваивают углекислый газ, который с помощью солнечной энергии преобразуют в органическое вещество своего тела. Так осуществляется фотосинтез , который называют воздушным питанием растений.

Из почвы через корни в растения поступают вода и ионы минеральных солей, т. е. происходит минеральное питание. Низшие растения: грибы, водоросли, лишайники - усваивают питательные элементы всей поверхностью тела.

Для питания растениям необходимы углерод, кислород, водород, азот, фосфор, калий, кальций, сера, магний, железо и микроэлементы, которые нужны им в небольшом количестве. Это медь, марганец, молибден, бор, цинк, кобальт и другие элементы. В составе растительных организмов обнаружены почти все химические элементы, существующие на нашей планете. Если растение не получает хотя бы один нужный элемент питания, то его основные жизненные функции резко нарушаются. Избыток других элементов не заменяет недостающих веществ. Это происходит потому, что питательные вещества выполняют в растительных тканях различные функции.

Потребности растений в элементах питания неодинаковы. Одни растения, например корнеплоды, нуждаются в повышенных дозах калия, другие - капуста, огурец - требуют много азота. У некоторых растений обнаружена потребность в натрии (сахарная свекла), кобальте (горох, соя и другие бобовые).

Как же происходит усвоение питательных веществ и их дальнейшее превращение в тело растительного организма? В процессе фотосинтеза из углекислого газа и воды, поступающей из почвы через корни, в листьях образуются первичные органические продукты - ассимиляты (сахароза и др.). Из клеток листа они поступают в ситовидные трубки флоэмы (ткани, проводящей питательные вещества от листьев к корням) и перемещаются вниз по стеблю, распространяясь затем по его тканям.

Корни растений всасывают из почвенного раствора ионы минеральных элементов, которые проникают внутрь корневых клеток. Затем минеральные вещества вместе с водой поступают в сосуды ксилемы (ткани, по которой питательные вещества движутся от корней к листьям) и по ним передвигаются в листья.

Одни элементы (калий, натрий) подаются в наземные органы в неизменном состоянии, другие - в виде органических соединений. В листьях минеральные элементы взаимодействуют с ассимилятами. Здесь образуются разнообразные органические и органо-минеральные соединения . Из них растения и строят свои ткани и органы.

Минеральное и воздушное питание растений - два звена одного физиологического процесса. Только при достаточном минеральном питании фотосинтез протекает интенсивно, и растения хорошо растут и развиваются.

Земледелец может управлять питанием растений, внося в почву минеральные и органические удобрения в нужных дозах и в оптимальные сроки, поливая растения. В защищенном грунте можно регулировать и воздушное питание, если повысить концентрацию углекислого газа в воздухе и использовать дополнительное освещение.

Очень важно уметь определять потребности сельскохозяйственных культур в том или ином элементе минерального питания, т. е. проводить диагностику питания растений.

При недостатке азота, фосфора, калия или другого элемента изменяются размер и окраска листьев, строение органов. Например, если растению не хватает азота, листья его становятся бледно-зелеными, мелкими, стебли - тонкими, у многих культур (плодовых, хлопчатника) опадают завязи.

Если недостает фосфора, то листья томата темно-зеленые с голубоватым оттенком, кукурузы - фиолетовые, капусты - красноватые. Молодые листья мелкие, по краям нижних листьев появляются участки отмершей ткани бурого или черного цвета.

Нужды растительного организма не ограничиваются водой, светом и углекислым газом. Кроме этого, для жизни растению абсолютно необходимы минеральные вещества, растворенные в воде. Без них растение не может расти, функционировать и плодоносить. К химическим элементам, наиболее необходимым для растений, относятся: N, P, Mg, Cl, Ca, S. Натрий входит в состав аминокислот; фосфор – в состав нуклеиновых кислот; магний – в состав хлорофилла; хлор, кальций, сера и многие другие элементы необходимы для поддержания жизнедеятельности не только растительных, но и любых других клеток. Растения получают микроэлементы из грунтового раствора. Особую потребность растительный организм испытывает в нитратах и фосфоре, поэтому недостаток этих элементов больше всего обозначается на росте и развитии растения. В разных частях земного шара почва имеет разный химический состав. Если почва, на которой выращиваются культурные растения, не содержит достаточного количества минералов, вегетативная масса растений и урожайность сильно снижаются. Тогда для восстановления урожайности в почву необходимо внести удобрения – вещества, содержащие минералы. Если количество удобрений чрезмерно, оно не используется растениями или накапливается в их тканях. Использование таких растений в пищу может привести к отравлению.

Воздушное питание растений осуществляется с помощью фотосинтеза.

Фотосинтез – это процесс преобразования энергии солнечного света в энергию химических связей и синтеза органических соединений (углеводов) из неорганических (воды и углекислого газа).

Основным фотосинтетическим пигментом высших растений является хлорофилл. По химической структуре различают несколько видов хлорофилла – a (содержится в хлоропластах всех зеленых растений и цианобактерий), b , c и d (присутствуют вместе с хлорофиллом a в клетках водорослей).

Процесс фотосинтеза состоит из двух взаимосвязанных этапов световой и темновой фаз. Световая фаза происходит лишь при наличии света, с помощью фотосинтетических пигментов в тилакоидах хлоропластов. Реакции темновой фазы не требуют для своего осуществления света и происходят в строме хлоропластов.

В световой фазе фотосинтеза происходит поглощение света молекулами хлорофилла и трансформация энергии света в химическую энергию АТФ и восстановленного НАНДФН (никотинамидадениндинуклеотидфосфат восстановленный). Эти процессы осуществляются белковыми комплексами, которые входят в состав тилакоидов хлоропластов.

Одними из таких комплексов являются фотосистема 1 (ФС1) и фотосистема 2 (ФС2). В каждой фотосистеме выделяют три зоны: антенный комплекс, реакционный центр, первичные акцепторы электронов. Антенный комплекс состоит из хлорофилла b и вспомогательных пигментов. Он предназначен для улавливания энергии света и передачи ее на реакционный центр. К реакционному центру ФС1 и ФС2 относятся молекулы хлорофилла a .

Процессы в световой фазе осуществляются по так называемой Z-схеме. Кванты света, попадая на ФС2 и передавая ей всю свою энергию, возбуждают электроны реакционного центра, которые передаются через цепь белковых переносчиков и теряют при этом энергию. Образованное вследствие выхода электронов вакантное место в ФС2 пополняется электронами, полученными во время фотолиза воды – реакции расщепления молекулы воды под действием кванта света с выделением протонов, электронов и кислорода.

Вместе с тем в случае возбуждения реакционного центра ФС1 электрон передается через железосодержащие белки, также теряя при этом энергию. Часть энергии, которая выделилась, идет на ферментативное восстановление НАДФ+ к НАДФН. Вакантное место, которое образовалось в ФС1, занимается электронами, которые поступили с ФС2. Энергия, которая высвободилась во время прохождения электронов с ФС2 в ФС2, используется для синтеза АТФ с АДФ и неорганического фосфата.

Образованные в результате фотохимических реакций АТФ и НАДФН используются для осуществления реакций темновой фазы, в которой происходит восстановление молекул СО 2 к молекулам углеводов (глюкозы). Существуют разные способы восстановления СО 2 , наиболее распространенный из них – цикл Кальвина , присущий всем растениям.

В процессе цикла Кальвина происходит фиксация атома Карбона СО 2 для построения глюкозы (С 6 Н 12 О 6) с рибулезо1,5 дифосфата (С 5 Н 8 О 5 Р 2).

Для синтеза 1 молекулы глюкозы в цикле Кальвина необходимо 12 молекул НАДФН и 18молекул АТФ, которые образовываются в результате фотохимических реакций фотосинтеза. Энергия для синтеза углеводов образовывается вследствие расщепления молекул АТФ, синтезированных во время прохождения электронов по компонентам ФС1 и ФС2.

Образования в процессе цикла Кальвина глюкоза может потом расщепляться до пирувата и поступать в цикл Кребса.