Типы газовых турбин. Конструкция газовых турбин История создания газовой турбины

Принцип действия газотурбинных установок

Рис.1. Схема ГТУ с одновальным ГТД простого цикла

В компрессор (1) газотурбинного силового агрегата подается чистый воздух. Под высоким давлением воздух из компрессора направляется в камеру сгорания (2), куда подается и основное топливо - газ. Смесь воспламеняется. При сгорании газовоздушной смеси образуется энергия в виде потока раскаленных газов. Этот поток с высокой скоростью устремляется на рабочее колесо турбины (3) и вращает его. Вращательная кинетическая энергия через вал турбины приводит в действие компрессор и электрический генератор (4). С клемм электрогенератора произведенное электричество, обычно через трансформатор, направляется в электросеть, к потребителям энергии.

Газовые турбины описываются термодинамическим циклом Брайтона Цикл Брайтона/Джоуля - термодинамический цикл, описывающий рабочие процессы газотурбинного, турбореактивного и прямоточного воздушно-реактивного двигателей внутреннего сгорания, а также газотурбинных двигателей внешнего сгорания с замкнутым контуром газообразного (однофазного) рабочего тела.

Цикл назван в честь американского инженера Джорджа Брайтона, который изобрёл поршневой двигатель внутреннего сгорания, работавший по этому циклу.

Иногда этот цикл называют также циклом Джоуля - в честь английского физика Джеймса Джоуля, установившего механический эквивалент тепла.

Рис.2. P,V диаграмма цикла Брайтона

Идеальный цикл Брайтона состоит из процессов:

  • 1-2 Изоэнтропическое сжатие.
  • 2-3 Изобарический подвод теплоты.
  • 3-4 Изоэнтропическое расширение.
  • 4-1 Изобарический отвод теплоты.

С учётом отличий реальных адиабатических процессов расширения и сжатия от изоэнтропических, строится реальный цикл Брайтона (1-2p-3-4p-1 на T-S диаграмме)(рис.3)

Рис.3. T-S диаграмма цикла Брайтона
Идеального (1-2-3-4-1)
Реального (1-2p-3-4p-1)

Термический КПД идеального цикла Брайтона принято выражать формулой:

  • где П = p2 / p1 - степень повышения давления в процессе изоэнтропийного сжатия (1-2);
  • k - показатель адиабаты (для воздуха равный 1,4)

Следует особо отметить, что этот общепринятый способ вычисления КПД цикла затемняет суть происходящего процесса. Предельный КПД термодинамического цикла вычисляется через отношение температур по формуле Карно:

  • где T1 - температура холодильника;
  • T2 - температура нагревателя.

Ровно это же отношение температур можно выразить через величину применяемых в цикле отношений давлений и показатель адиабаты:

Таким образом КПД цикла Брайтона, зависит от начальной и конечной температур цикла ровно так же, как и КПД цикла Карно. При бесконечно малой величине нагрева рабочего тела по линии (2-3) процесс можно считать изотермическим и полностью эквивалентным циклу Карно. Величина нагрева рабочего тела T3 при изобарическом процессе определяет величину работы отнесённую к количеству использованного в цикле рабочего тела, но ни каким образом не влияет на термический КПД цикла. Однако при практической реализации цикла нагрев обычно производится до возможно больших величин ограниченных жаростойкостью применяемых материалов с целью минимизировать размеры механизмов осуществляющих сжатие и расширение рабочего тела.

На практике, трение и турбулентность вызывают:

  • Неадиабатическое сжатие: для данного общего коэффициента давления температура нагнетания компрессора выше идеальной.
  • Неадиабатическое расширение: хотя температура турбины падает до уровня, необходимого для работы, на компрессор это не влияет, коэффициент давления выше, в результате, расширения не достаточно для обеспечения полезной работы.
  • Потери давления в воздухозаборнике, камере сгорания и на выходе: в результате, расширения не достаточно для обеспечения полезной работы.

Как и во всех циклических тепловых двигателях, чем выше температура сгорания, тем выше КПД. Сдерживающим фактором является способность стали, никеля, керамики или других материалов, из которых состоит двигатель, выдерживать температуру и давление. Значительная часть инженерных разработок направлена на то, чтобы отводить тепло от частей турбины. Большинство турбин также пытаются рекуперировать тепло выхлопных газов, которые, в противном случае, теряется впустую.

Рекуператоры - это теплообменники, которые передают тепло выхлопных газов сжатому воздуху перед сгоранием. При комбинированном цикле тепло передается системам паровых турбин. И при комбинированном производстве тепла и электроэнергии (когенерация) отработанное тепло используется для производства горячей воды.

Механически газовые турбины могут быть значительно проще, чем поршневые двигатели внутреннего сгорания. Простые турбины могут иметь одну движущуюся часть: вал/компрессор/турбина/альтернативный ротор в сборе (см. изображение ниже), не учитывая топливную систему.

Рис.4. Эта машина имеет одноступенчатый радиальный компрессор,
турбину, рекуператор, и воздушные подшипники.

Более сложные турбины (те, которые используются в современных реактивных двигателях), могут иметь несколько валов (катушек), сотни турбинных лопаток, движущихся статорных лезвий, а также обширную систему сложных трубопроводов, камер сгорания и теплообменников.

Как правило, чем меньше двигатель, тем выше должна быть частота вращения вала(ов), необходимая для поддержания максимальной линейной скорости лопаток.

Максимальная скорость турбинных лопаток определяет максимальное давление, которое может быть достигнуто, что приводит к получению максимальной мощности, независимо от размера двигателя. Реактивный двигатель вращается с частотой около 10000 об/мин и микро-турбина - с частотой около 100000 об/мин.



Газовая турбина

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 22 марта 2012; проверки требуют 13 правок.

Промышленная газовая турбина в разобранном виде.

Га́зовая турби́на (фр. turbine от лат. turbo вихрь, вращение ) - это двигатель непрерывного действия, в лопаточном аппарате которого энергия сжатого и/или нагретого газа преобразуется в механическую работу на валу. Горение топлива может происходить как вне турбины, так и в самой турбине. [источник не указан 380 дней ] Основными элементами конструкции являются ротор (рабочие лопатки, закреплённые на дисках) и статор, выполненный в виде выравнивающего аппарата (направляющие лопатки, закреплённые в корпусе).

Газовые турбины используются в составе газотурбинных двигателей, стационарных газотурбинных установок (ГТУ) и парогазовых установок (ПГУ).

История

Основная статья: История турбин

Попытки создать механизмы, похожие на турбины, делались очень давно. Известно описание примитивной паровой турбины, сделанное Героном Александрийским (1 в. до н. э.). В восемнадцатом веке англичанин Джон Барбер получил патент на устройство, которое имело большинство элементов, присутствующих в современных газовых турбинах. В 1872 году Франц Столц разработал газотурбинный двигатель. [источник не указан 380 дней ] Однако только в конце XIX века, когда термодинамика, машиностроение и металлургия достигли достаточного уровня, Густаф Лаваль (Швеция) и Чарлз Парсонс (Великобритания) независимо друг от друга создали пригодные для промышленного использования паровые турбины.

Принцип работы

Газ под высоким давлением поступает через сопловой аппарат турбины в область низкого давления, при этом расширяясь и ускоряясь. Далее, поток газа попадает на рабочие лопатки турбины, отдавая им часть своей кинетической энергии и сообщая лопаткам крутящий момент. Рабочие лопатки передают крутящий момент через диски турбины на вал. Газовая турбина чаще всего используется как привод генераторов.

Механически газовые турбины могут быть значительно проще, чем поршневые двигатели внутреннего сгорания. Более сложные турбины (которые используются в современных турбореактивных двигателях), могут иметь несколько валов, сотни турбинных и статорных лопаток, а также обширную систему сложных трубопроводов, камер сгорания и теплообменников.

Упорные подшипники и радиальные подшипники являются критическими элементом разработки. Традиционно они были гидродинамические, или охлаждаемые маслом шарикоподшипники. Их превзошли воздушные подшипники, которые успешно используются в микротурбинах и вспомогательных силовых установках.

Типы газовых турбин

Газовые турбины часто используются во многих ракетах на жидком топливе, а также для питания турбонасосов, что позволяет использовать их в легковесных резервуарах низкого давления, хранящих значительную сухую массу.

«Турбонаддув», «турбореактивные», «турбовинтовые», - эти термины прочно вошли в лексикон инженеров XX века, занимающихся проектированием и обслуживанием транспортных средств и стационарных электрических установок. Их применяют даже в смежных областях и рекламе, когда хотят придать названию продукта какой-то намек на особую мощность и эффективность. В авиации, ракетах, кораблях и на электростанциях чаще всего применяется газовая турбина. Как она устроена? Работает ли на природном газе (как можно подумать из названия), и какими вообще они бывают? Чем турбина отличается от других типов двигателя внутреннего сгорания? В чем ее преимущества и недостатки? Попытка как можно полнее ответить на эти вопросы предпринята в этой статье.

Российский машиностроительный лидер ОДК

России, в отличие от многих других независимых государств, образовавшихся после распада СССР, удалось в значительной мере сохранить машиностроительную промышленность. В частности, производством силовых установок особого назначения занимается фирма «Сатурн». Газовые турбины этой компании находят применение в судостроении, сырьевой отрасли и энергетики. Продукция высокотехнологична, она требует особого подхода при монтаже, отладке и эксплуатации, а также специальных знаний и дорогостоящей оснастки при плановом обслуживании. Все эти услуги доступны заказчикам фирмы «ОДК - Газовые турбины», так сегодня она называется. Таких предприятий в мире не так уж много, хотя принцип устройства главной продукции на первый взгляд несложен. Имеет огромное значение накопленный опыт, позволяющий учитывать многие технологические тонкости, без чего добиться долговечной и надежной работы агрегата невозможно. Вот лишь часть ассортимента продукции ОДК: газовые турбины, электростанции, агрегаты для перекачки газа. Среди заказчиков - "Росатом", "Газпром" и другие «киты» химической промышленности и энергетики.

Изготовление таких сложных машин требует в каждом случае индивидуального подхода. Расчет газовой турбины в настоящее время полностью автоматизирован, но имеют значение материалы и особенности монтажных схем в каждом отдельном случае.

А начиналось все так просто…

Поиски и пар

Первые опыты преобразования поступательной энергии потока во вращательную силу человечество провело еще в глубокой древности, применив обычное водяное колесо. Все предельно просто, сверху вниз течет жидкость, в ее поток помещаются лопатки. Колесо, снабженное ими по периметру, крутится. Так же работает и ветряная мельница. Затем настал век пара, и вращение колеса убыстрилось. Кстати, так называемый «эолипил», изобретённый древним греком Героном примерно за 130 лет до Рождества Христова, представлял собой паровой двигатель, работающий именно по такому принципу. В сущности, это была первая известная исторической науке газовая турбина (ведь пар - это газообразное агрегатное состояние воды). Сегодня все же принято разделять эти два понятия. К изобретению Герона тогда в Александрии отнеслись без особого восторга, хотя и с любопытством. Промышленное оборудование турбинного типа появилось только в конце XIX века, после создания шведом Густафом Лавалем первого в мире активного силового агрегата, оснащенного соплом. Примерно в том же направлении работал инженер Парсонс, снабдив свою машину несколькими функционально связанными ступенями.

Рождение газовых турбин

Столетием ранее некоему Джону Барберу пришла в голову гениальная мысль. Зачем нужно сначала нагревать пар, не проще ли использовать непосредственно выхлопной газ, образующийся при сгорании горючего, и тем самым устранить ненужное посредничество в процессе преобразования энергии? Так получилась первая настоящая газовая турбина. Патент 1791 года излагает основную идею использования в безлошадной повозке, но его элементы сегодня применяются в современных ракетных, авиационных танковых и автомобильных моторах. Начало процессу реактивного двигателестроения дал в 1930 году Фрэнк Уиттл. Ему пришла идея использовать турбину для приведения в движение самолета. В дальнейшем она нашла развитие в многочисленных турбовинтовых и турбореактивных проектах.

Газовая турбина Николы Тесла

Знаменитый ученый-изобретатель всегда подходил к изучаемым вопросам нестандартно. Для всех казался очевидным тот факт, что колеса с лопатками или лопастями «улавливают» движение среды лучше, чем плоские предметы. Тесла, в свойственной ему манере, доказал, что если собрать роторную систему из дисков, расположениях на оси последовательно, то за счет подхватывания пограничных слоев потоком газа, она будет вращаться не хуже, а в некоторых случаях даже лучше, чем многолопастный пропеллер. Правда, направленность подвижной среды должна быть тангенциальной, что в современных агрегатах не всегда возможно или желательно, но зато существенно упрощается конструкция, - в ней совершенно не нужны лопатки. Газовой турбины по схеме Тесла пока не строят, но возможно, идея лишь ждет своего времени.

Принципиальная схема

Теперь о принципиальном устройстве машины. Она представляет собой совокупность вращающейся системы, насаженной на ось (ротора) и неподвижной части (статора). На валу размещен диск с рабочими лопатками, образующими концентрическую решетку, на них воздействует газ, подаваемый под давлением через специальные сопла. Затем расширившийся газ поступает на крыльчатку, также оборудованную лопатками, называемыми рабочими. Для впуска воздушно-топливной смеси и выпуска (выхлопа) служат особые патрубки. Также в общей схеме участвует компрессор. Он может быть выполнен по различному принципу, в зависимости от требуемого рабочего давления. Для его работы от оси отбирается часть энергии, идущая на сжатие воздуха. Газовая турбина работает за счет процесса сгорания воздушно-топливной смеси, сопровождающегося значительным увеличением объема. Вал вращается, его энергию можно использовать полезно. Такая схема называется одноконтурной, если же она повторяется, то ее считают многоступенчатой.

Достоинства авиационных турбин

Примерно с середины пятидесятых годов появилось новое поколение самолетов, в том числе и пассажирских (в СССР это Ил-18, Ан-24, Ан-10, Ту-104, Ту-114, Ту-124 и т. д.), в конструкции которых авиационные поршневые двигатели окончательно и бесповоротно были вытеснены турбинными. Это свидетельствует о большей эффективности такого типа силовой установки. Характеристики газовой турбины превосходят параметры карбюраторных моторов по многим пунктам, в частности, по отношению мощность/вес, которое для авиации имеет первостепенное значение, а также по не менее важным показателям надежности. Ниже расход топлива, меньше подвижных деталей, лучше экологические параметры, снижен шум и вибрации. Турбины менее критичны к качеству горючего (чего нельзя сказать о топливных системах), их легче обслуживать, они требуют не так много смазочного масла. В общем, на первый взгляд кажется, что состоят они не из металла, а из сплошных достоинств. Увы, это не так.

Есть у газотурбинных двигателей и недостатки

Газовая турбина во время работы нагревается, и передает тепло окружающим ее элементам конструкции. Особенно это критично опять же в авиации, при использовании реданной схемы компоновки, предполагающей омывание реактивной струей нижней части хвостового оперения. Да и сам корпус двигателя требует особой теплоизоляции и применения особых тугоплавких материалов, выдерживающих высокие температуры.

Охлаждение газовых турбин - сложная техническая задача. Шутка ли, они работают в режиме фактически перманентного взрыва, происходящего в корпусе. КПД в некоторых режимах ниже, чем у карбюраторных моторов, впрочем, при использовании двухконтурной схемы этот недостаток устраняется, хотя усложняется конструкция, как и в случае включения в схему компрессоров «дожима». Разгон турбин и выход на рабочий режим требует некоторого времени. Чем чаще происходит запуск и остановка агрегата, тем быстрей он изнашивается.

Правильное применение

Что же, без недостатков ни одна система не обходится. Важно найти такое применение каждой из них, при котором ярче проявятся ее достоинства. Например, танки, такие как американский «Абрамс», в основе силовой установки которого - газовая турбина. Его можно заправлять всем, что горит, от высокооктанового бензина до виски, и он выдает большую мощность. Пример, возможно, не очень удачный, так как опыт применения в Ираке и Афганистане показал уязвимость лопаток компрессора к воздействию песка. Ремонт газовых турбин приходится производить в США, на заводе-изготовителе. Отвести танк туда, потом обратно, да и стоимость самого обслуживания плюс комплектующие…

Вертолеты, российские, американские и других стран, а также мощные быстроходные катера в меньшей степени страдают от засорений. В жидкостных ракетах без них не обойтись.

Современные боевые корабли и гражданские суда также имеют газотурбинные двигатели. А еще энергетика.

Тригенераторные электростанции

Проблемы, с которыми сталкивались авиастроители, не так волнуют тех, кто производит промышленное оборудование для производства электроэнергии. Вес в этом случае уже не так важен, и можно сосредоточиться на таких параметрах, как КПД и общая эффективность. Генераторные газотурбинные агрегаты имеют массивный каркас, надежную станину и более толстые лопасти. Выделяемое тепло вполне возможно утилизировать, используя для самых различных нужд, - от вторичного рециклинга в самой системе, до отопления бытовых помещений и термального питания холодильных установок абсорбционного типа. Такой подход называется тригенераторным, и КПД в этом режиме приближается к 90 %.

Ядерные энергоустановки

Для газовой турбины не имеет принципиальной разницы, каков источник разогретой среды, отдающей свою энергию ее лопаткам. Это может быть и сгоревшая воздушно-топливная смесь, и просто перегретый пар (не обязательно водяной), главное, чтобы он обеспечивал ее бесперебойное питание. По своей сути энергетические установки всех атомных электростанций, подводных лодок, авианосцев, ледоколов и некоторых военных надводных кораблей (ракетный крейсер «Петр Великий», например) имеют в своей основе газовую турбину (ГТУ), вращаемую паром. Вопросы безопасности и экологии диктуют закрытый цикл первого контура. Это означает, что первичный тепловой агент (в первых образцах эту роль выполнял свинец, сейчас его заменили парафином), не покидает приреакторной зоны, обтекая тепловыделяющие элементы по кругу. Нагрев рабочего вещества осуществляется в последующих контурах, и испаренный углекислый газ, гелий или азот вращает колесо турбины.

Широкое применение

Сложные и большие установки практически всегда уникальны, их производство ведется малыми сериями или вообще изготовляются единичные экземпляры. Чаще всего агрегаты, выпускаемые в больших количествах, находят применение в мирных отраслях хозяйства, например, для перекачки углеводородного сырья по трубопроводам. Именно такие и производятся компанией ОДК под маркой «Сатурн». Газовые турбины насосных станций полностью соответствуют по назначению своему названию. Они действительно качают природный газ, используя для своей работы его же энергию.

Газотурбинные установки (ГТУ) востребованы в промышленности, транспортной сфере, широко используются в энергетической отрасли. Это не очень сложное по конструкции оборудование, которые имеет высокий КПД и экономично в использовании.

Газовые турбины во многом схожи с двигателями, работающими на дизеле или бензине: как и в ДВС, тепловая энергия, получаемая при сгорании топлива, переходит в механическую. При этом в установках открытого типа используются продукты сгорания, в закрытых системах - газ или обычный воздух. Одинаково востребованы и те, и другие. Кроме открытых и закрытых, различают турбокомпрессорные турбины и установки со свободно-поршневыми газогенераторами.

Проще всего рассмотреть конструкцию и принцип работы газовой турбины на установке турбокомпрессорного типа, которая работает при постоянном давлении.

Конструкция газовой турбины

Газовая турбина состоит из компрессора, воздухопровода, камеры сгорания, форсунки, проточной части, неподвижных и рабочих лопаток, патрубка для отработанных газов, редуктора, гребного винта и пускового двигателя.

За запуск турбины отвечает пусковой двигатель. Он приводит в движение компрессор, который раскручивается до нужной частоты вращения. Затем:

  • компрессор захватывает воздух из атмосферы и сжимает его;
  • воздух отправляется в камеру сгорания через воздухопровод;
  • через форсунку в ту же камеру входит топливо;
  • газ и воздух смешиваются и сгорают при постоянном давлении, в результате образуются продукты сгорания;
  • продукты сгорания охлаждают с помощью воздуха, после чего они поступают в проточную часть;
  • в неподвижных лопатках смесь газов расширяется и ускоряется, затем направляется на рабочие лопатки и приводит их в движение;
  • отработанная смесь выходит из турбины, по патрубку;
  • турбина передает кинетическую энергию компрессору и гребному винту посредством редуктора.

Таким образом, газ в смеси с воздухом, сгорая, образует рабочую среду, которая, расширяясь, ускоряется и раскручивает лопатки, а за ними - и гребной винт. В последующем кинетическая энергия превращается в электричество или используется для передвижения морского судна.

Сэкономить на топливе можно, используя принцип регенерации тепла. В этом случае воздух, поступающий в турбину, согревается за счет отработанных газов. В результате установка расходует меньше топлива и происходит больше кинетической энергии. Регенератор, где подогревается воздух, одновременно служит для охлаждения отработанных газов.

Особенности ГТУ закрытого типа

Газовая турбина открытого типа забирает воздух из атмосферы и выводит отработанный газ наружу. Это не очень эффективно и опасно, если установка стоит в закрытом помещении, где работают люди. В этом случае используют ГТУ закрытого типа. Такие турбины не выпускают отработанные рабочее тело в атмосферу, а направляют его в компрессор. Оно не перемешивается с продуктами сгорания. Как результат, рабочая среда, циркулирующая в турбине, остается чистой, что увеличивает ресурс установки и сокращает количество поломок.

Однако закрытые турбины имеют слишком большие габариты. Газы, которые не выходят наружу, должны быть достаточно эффективно охлаждены. Это возможно только в больших теплообменниках. Поэтому установки используют на крупных судах, где достаточно места.

Закрытые ГТУ могут иметь и ядерный реактор. В качестве теплоносителя в них используют углекислый газ, гелий или азот. Газ нагревают в реакторе и направляют в турбину.

ГТУ и их отличия от паровых турбин и ДВС

Газовые турбины отличаются от ДВС более простой конструкцией и легкостью ремонта. Важно и то, что в них не предусмотрен кривошипно-шатунный механизм, который делает ДВС громоздким и тяжелым. Турбина легче и меньше двигателя аналогичной мощности приблизительно в два раза. Кроме того, она может работать на топливе низкого сорта.

От паровых газовые турбины отличаются небольшими габаритами и простым запуском. Обслуживать их легче, чем установки, работающие на пару.

Имеют турбины и недостатки: они не настолько экономичны по сравнению с ДВС, сильнее шумят, быстрее приходят в негодность. Впрочем, это не мешает использовать ГТУ в транспорте, промышленности и даже быту. Турбины устанавливают на морских и речных судах, используют в электростанциях, насосном оборудовании и многих других сферах. Они удобны и мобильны, поэтому применяются достаточно часто.

Газотурбинная установка (ГТУ) состоит из газотурбинного двигателя (ГТД) и вспомогательных устройств.В состав двигателя входят: газовая турбина, камера сгорания, компрессор, воздухоохладитель, регенеративные теплообменники. К вспомогательным устройствам, в зависимости от назначения ГТУ, можно отнести: газоотводящие устройства (газоходы, борова, трубы), пусковые устройства, масляные системы, элементы водоснабжения и т. п.ГТУ предназначена либо для выработки электроэнергии, либо для привода механизмов. Принцип работы газовой турбины аналогичен паровой. Однако ра­бочим телом здесь являются продукты сгорания топлива. Основное различие связано со свойствами рабочих тел и их параметрами: давление продуктов сгорания ниже, а температура выше, чем у пара. ГТУ намного проще, т.к. нет парциального подвода газа, регулирующей ступени, и отборов промежуточных ступеней. Относительно небольшой располагаемый теплоперепад определяет небольшое количество ступеней, и к тому же разница между высотами лопаток1й и последней ступеней меньше, чем у паровой. Почти все современные газовые турбины работают по такой схеме, при которой продукты сгорания проходят через ее проточную часть. Поэтому в газовых турбинах топливо должно содержать очень малое количество золы и других вредных примесей. К такому топливу можно отнести природный газ, хорошо очищенные искусственные газы (до­менный, коксовый, генераторный) и специальное газотурбинное жидкое топливо (прошедшее обработку дизельное моторное, соляровое масло).

В связи с высокой температурой газов (1100 0 К) детали проточной части (сопла, диски, валы, рабочие лопатки) изготавливают из высококачественных легированных сталей. У большинства турбин предусмотрено интенсивное воздушное охлаждение наиболее нагретых деталей. Подготовка рабочей смеси производится в камере сгорания. Тепловой КПД КС КС = 0,970,99 устанавливают,в основном, цилиндрические камеры. Объём камеры разделяется на зону горения, где происходит сгорание топлива при Т = 2000 0 С и зону смешения, где к продуктам сгорания подмешивают воздух для снижения температуры. В камерах устанавливают несколько форсунок, что позволяет регулировать тепловую мощность изменением числа работающих форсунок. Тепловая мощность камеры доходит до 40 МВт при давлении 0,4 – 0,45 МПа. Расход топлива до 3000кг/ч, расход воздуха 2,5*10 5 м 3 /ч. В ГТУ применяют осевые и реже центробежные компрессоры. Осевые конструируют на расход воздуха 100 – 200 м 3 /с; степень повышения давления до 1,35. Т.о. для обеспечения необходимого давления число ступеней делают более 10. КПД осевого компрессора 83 – 90%. Центробежные применяют небольшой мощности – до 400кВт; КПД одноступенчатых - 7585%. Жаропрочность материалов деталей ГТ не позволяет иметь температуру свыше 1100 К и только в авиационных турбинах, которые имеют ограниченный моторесурс, температура может достигать 1500 0 К. Снижение температуры на входе в компрессор Т 1 значительно влияет на внутренний КПД i , т.к. Т 1 значительно зависит от климата района. Поэтому ГТУ экономичнее работают в районах с более низкой среднегодовой температурой воздуха.

КПД простейших ГТУ не превышает 14 – 18% и для его повышения используют регенеративный подогрев сжатого воздуха отработавшими газами после газовой турбины, т.е. используют теплоту выхлопных газов для предварительного подогрева воздуха перед камерой сгорания.

Подогрев производят в регенераторах, которые представляют собой трубчатый теплообменник, где для получения высоких коэффициентов теплоотдачи от газа и воздуха применяют высокие скорости потока, а это снижает КПД реального цикла из-за увеличения сопротивления газовоздушного тракта.

ГТУ с промежуточным охлаждением и подогревом рабочего тела уменьшает работу сжатия в компрессоре и увеличивает работу расширения в ГТ.

Атмосферный воздух сжимается в компрессоре низкого давления КНД, затем охлаждается в водяном теплообменнике ВО, далее снова сжимается в компрессоре высокого давления КВД и поступает в камеру сгорания высокого давления КСВ, продукты сгорания расширяются в газовой турбине высокого давления ТВД, подогреваются в камере сгорания низкого давления КСН, затем снова расширяются в турбине низкого давления ТНД. Чем больше промежуточных ступеней подогрева и охлаждения, тем выше КПД установки, но это усложняет конструкцию, поэтому в современных ГТУ применяют не более 2 промежуточных охладителей воздуха и одного промежуточного подогревателя.

Для ГТУ характерно высокое количество отходящих газов и достаточно высокая температура – 400 – 500 0 С. Эту теплоту можно использовать для получения пара и горячей воды в обычных теплообменниках. Так установки ГТ-25-700 ЛМЗ снабжены сетевыми подогревателями, обеспечивающими подогрев воды до 150-160 0 С. Сочетание преимуществ парового и газотурбинного цикла привел к созданию парогазовых установок ПГУ (до 200МВт). Работают на параметрах до 14МПа (паровая часть) и 570 0 С, а газовый агрегат 0,65 МПа и 770 0 С. Паровая турбина работает в комплекте с электрогенератором мощностью 165 МВт, а газовая турбина 33 МВт. ГТУ применяют в энергетике для покрытия пиковых нагрузок и в качестве аварийного резерва.

25.Схема ДВС. Принцип работы .

Поршневым двигателем внутреннего сгорания (ДВС) называется тепловая машина в рабочем цилиндре которой происходит сжигание топлива и преобразование теплоты в работу.

Принципиальная схема ДВС показана на рис.28.1. основным элементом любого поршневого двигателя является цилиндр 4 с поршнем 5, соединенным посредством кривошипно-шатунного механизма с внешним потребителем работы. Цилиндр монтируется на верхней части картера 1 ; он сверху закрыт крышкой, в которой установлены впускной 2 и выпускной 3 клапаны и электрическая свеча зажигания (в карбюраторном или газовом двигателях) или форсунка (в дизеле). В зарубашечном пространстве цилиндра и его головки циркулирует охлаждающая жидкость.

В картере монтируется коленчатый вал, кривошип 7, который шарнирно соединен с шатуном 6. Верхняя головка шатуна сочленена с поршнем, который совершает прямолинейное возвратно-поступательное движение в цилиндре. Кроме основных деталей двигатель имеет ряд вспомогательных механизмов для подачи топлива, смазки, для охлаждения и другие устройства, необходимые для его обслуживания.

Крайнее положение поршня называют верхней мертвой точкой (ВМТ) и нижней мертвой точкой (НМТ). Ход поршня от ВМТ до НМТ называют ходом (тактом поршня). Объем, описываемый поршнем за 1 ход, является рабочим объемом цилиндра.

Анализ рабочего цикла обычно производят с помощью индикаторной диаграммы, на которой графически изображена зависимость давления в цилиндре от объема, занятого газом, или положения поршня.

Различается 2 типа поршневых ДВС –четырехтактные и двухтактные.

Рисунок 28.2а. Отдельным процессам соответствуют: 0-1 – всасывание топливной смеси (1-й такт); 1-2- сжатие смеси (2-й такт); 2-3 – сгорание; 3-4 – расширение продуктов сгорания; 4-5 – выхлоп (3-й такт); 5-0 – выталкивание продуктов сгорания (4- й такт).

Из всех 4-х тактов составляющих цикл только в 3-м получается полезная работа, в остальных 3-х тактах работа затрачивается.

Рисунок 28.2б. : 0-1 – введение новой порции смеси; 1-2 – сжатие -1-й такт; 2-3 – сгорание; 3-4 – расширение; 4-0 – выхлоп (2-й такт).

Двигатели с «мгновенным сгоранием» топлива (карбюраторные и газовые). В цилиндр такого двигателя всасывается горючая смесь, которая в нужный момент поджигается от внешнего источника. Время сгорания готовой смеси очень мало, в связи с чем допустимо считать, что процесс сгорания осуществляется при (почти) постоянном объеме.

Двигатели со сгоранием топлива при (почти) постоянном давлении (компрессорные дизельные двигатели. В цилиндре двигателя сжимается чистый воздух. В конце сжатия в цилиндр впрыскивается топливо, которое в процессе смешения с горячим воздухом воспламеняется и сгорает при постоянном давлении.

Двигатели со смешанным сгоранием топлива (бескомпрессорные дизельные двигатели). В цилиндре двигателя тоже сжимается чистый воздух, а жидкое топливо подается форсункой в мелко-распыленном виде в цилиндр в конце такта сжатия.

Все типы двигателей могут выполняться как 4-х тактными, так и 2-х тактными.