Теория динамической решетки эфира (магнитного поля). Теория магнитного поля и интересные факты о магнитном поле земли Создание магнитного поля

Под термином "магнитное поле" принято подразумевать определенное энергетическое пространство, в котором проявляются силы магнитного взаимодействия. Они влияют на:

    отдельные вещества: ферримагнетики (металлы - преимущественно чугуны, железо и сплавы из них) и их класс ферритов вне зависимости от состояния;

    движущиеся заряды электричества.

Физические тела, обладающие суммарным магнитным моментом электронов или других частиц, называют постоянными магнитами . Их взаимодействие представлено на картинке силовыми магнитными линиями .


Они образовались после поднесения постоянного магнита к обратной стороне картонного листа с ровным слоем железных опилок. Картинка демонстрирует четкую маркировку северного (N) и южного (S) полюсов с направлением силовых линий относительно их ориентации: выход из северного полюса и вход в южный.

Как создается магнитное поле

Источниками магнитного поля являются:


С действием постоянных магнитов знаком каждый ребенок детсадовского возраста. Ведь ему уже приходилось лепить на холодильник картинки-магнитики, извлекаемые из упаковок с всякими лакомствами.

Находящиеся в движении электрические заряды обычно обладают значительно большей энергией магнитного поля, чем . Его тоже обозначают силовыми линиями. Разберем правила их начертания для прямолинейного проводника с током I.


Магнитная силовая линия проводится в плоскости, перпендикулярной движению тока так, чтобы в каждой ее точке сила, действующая на северный полюс магнитной стрелки, направлялась по касательной к этой линии. Таким образом создаются концентрические окружности вокруг движущегося заряда.

Направление этих сил определяется известным правилом винта или буравчика с правосторонней навивкой резьбы.

Правило буравчика


Необходимо расположить буравчик соосно с вектором тока и вращать рукоятку так, чтобы поступательное движение буравчика совпадало с его направлением. Тогда ориентация силовых магнитных линий будет показана вращением рукоятки.

В кольцевом проводнике вращательное движение рукоятки совпадает с направлением тока, а поступательное - указывает на ориентацию индукции.


Магнитные силовые линии всегда выходят из северного полюса и входят в южный. Они продолжаются внутри магнита и никогда не бывают разомкнутыми.

Правила взаимодействия магнитных полей

Магнитные поля от разных источников складываются друг с другом, образуя результирующее поле.


При этом магниты с разноименными полюсами (N - S) притягиваются друг к другу, а с одноименными (N – N, S - S) - отталкиваются. Силы взаимодействия между полюсами зависят от расстояния между ними. Чем ближе сдвинуты полюса, тем большее усилие возникает.

Основные характеристики магнитного поля

К ним относят:

    вектор магнитной индукции (В );

    магнитный поток (Ф);

    потокосцепление (Ψ).

Интенсивность или силу воздействия поля оценивают величиной вектора магнитной индукции . Она определяется значением силы «F», создаваемой проходящим током «I» по проводнику длиной «l». В =F/(I∙l)

Единица измерения магнитной индукции в системе СИ - Тесла (в знак памяти об ученом физике, который исследовал эти явления и описал их математическими методами). В русской технической литературе она обозначается «Тл», а в международной документации принят символ «Т».

1 Тл - это индукция такого однородного магнитного потока, который воздействует с силой в 1 ньютон на каждый метр длины прямолинейного проводника, перпендикулярно расположенного направлению поля, когда по этому проводнику проходит ток 1 ампер.

1Тл=1∙Н/(А∙м)

Направление вектора В определяется по правилу левой руки.


Если расположить ладонь левой руки в магнитном поле так, чтобы силовые линии из северного полюса входили в ладонь под прямым углом, а четыре пальца расположить по направлению тока в проводнике, то оттопыренный большой палец укажет направление действия силы на этот проводник.

В случае, когда проводник с электрическим током расположен не под прямым углом к магнитным силовым линиям, то сила, воздействующая на него, будет пропорциональна величине протекающего тока и составляющей части проекции длины проводника с током на плоскость, расположенную в перпендикулярном направлении.

Сила, воздействующая на электрический ток, не зависит от материалов, из которых создан проводник и площади его сечения. Даже если этого проводника вообще не будет, а движущиеся заряды станут перемещаться в другой среде между магнитными полюсами, то эта сила никак не изменится.

Если внутри магнитного поля во всех точках вектор В имеет одинаковое направление и величину, то такое поле считают равномерным.

Любая среда, обладающая , оказывает влияние на значение вектора индукции В .

Магнитный поток (Ф)

Если рассматривать прохождение магнитной индукции через определенную площадь S, то ограниченная ее пределами индукция будет называться магнитным потоком.


Когда площадь наклонена под каким-то углом α к направлению магнитной индукции, то магнитный поток уменьшается на величину косинуса угла наклона площади. Максимальное же его значение создается при перпендикулярном расположении площади к ее пронизывающей индукции. Ф=В·S

Единицей измерения магнитного потока является 1 вебер, определяемый прохождением индукции в 1 теслу через площадь в 1 метр квадратный.

Потокосцепление

Этот термин используется для получения суммарной величины магнитного потока, создаваемого от определенного количества проводников с током, расположенных между полюсами магнита.

Для случая, когда один и тот же ток I проходит по обмотке катушки с числом витков n, то полный (сцепленный) магнитный поток от всех витков называют потокосцеплением Ψ.


Ψ=n·Ф . Единицей измерения потокосцепления является 1 вебер.

Как образуется магнитное поле от переменного электрического

Электромагнитное поле, взаимодействующее с электрическими зарядами и телами, обладающими магнитными моментами, представляет собой совокупность двух полей:

    электрического;

    магнитного.

Они взаимосвязаны, представляют собой совокупность друг друга и при изменении в течение времени одного происходят определенные отклонения в другом. К примеру, при создании переменного синусоидального электрического поля в трехфазном генераторе одновременно образуется такое же магнитное поле с характеристиками аналогичных чередующихся гармоник.

Магнитные свойства веществ

По отношению к взаимодействию с внешним магнитным полем вещества подразделяют на:

    антиферромагнетики с уравновешенными магнитными моментами, благодаря чему создается очень малая степень намагниченности тела;

    диамагнетики со свойством намагничивания внутреннего поля против действия внешнего. Когда же внешнее поле отсутствует, то у них магнитные свойства не проявляются;

    парамагнетики со свойствами намагничивания внутреннего поля по направлению действия внешнего, которые обладают малой степенью ;

    ферромагнетики , обладающие магнитными свойствами без приложенного внешнего поля при температурах, меньших значения точки Кюри;

    ферримагнетики с неуравновешенными по величине и направлению магнитными моментами.

Все эти свойства веществ нашли разнообразное применение в современной технике.

Магнитные цепи

На основе работают все трансформаторы, индуктивности, электрические машины и многие другие устройства.

Например, у работающего электромагнита магнитный поток проходит по магнитопроводу из ферромагнитных сталей и воздуху с выраженными не ферромагнитными свойствами. Совокупность этих элементов и составляет магнитную цепь.

Большинство электрических аппаратов в своей конструкции имеют магнитные цепи. Подробнее про это читайте в этой статье -

Подобно тому, как покоящийся электрический заряд действует на другой заряд посредством электрического поля, электрический ток действует на другой ток посредством магнитного поля . Действие магнитного поля на постоянные магниты сводится к действию его на заряды, движущиеся в атомах вещества и создающие микроскопические круговые токи.

Учение об электромагнетизме основано на двух положениях:

  • магнитное поле действует на движущиеся заряды и токи;
  • магнитное поле возникает вокруг токов и движущихся зарядов.

Взаимодействие магнитов

Постоянный магнит (или магнитная стрелка) ориентируется вдоль магнитного меридиана Земли. Тот его конец, который указывает на север, называется северным полюсом (N), а противоположный конец - южным полюсом (S). Приближая два магнита друг к другу, заметим, что одноименные их полюсы отталкиваются, а разноименные - притягиваются (рис. 1 ).

Если разделить полюса, разрезав постоянный магнит на две части, то мы обнаружим, что каждая из них тоже будет иметь два полюса , т. е. будет постоянным магнитом (рис. 2 ). Оба полюса - северный и южный, - неотделимые друг от друга, равноправны.

Магнитное поле, создаваемое Землей или постоянными магнитами, изображается, подобно электрическому полю, магнитными силовыми линиями. Картину силовых линий магнитного поля какого-либо магнита можно получить, помещая над ним лист бумаги, на котором насыпаны равномерным слоем железные опилки. Попадая в магнитное поле, опилки намагничиваются - у каждой из них появляется северный и южный полюсы. Противоположные полюсы стремятся сблизиться друг с другом, но этому мешает трение опилок о бумагу. Если постучать по бумаге пальцем, трение уменьшится и опилки притянутся друг к другу, образуя цепочки, изображающие линии магнитного поля.

На рис. 3 показано расположение в поле прямого магнита опилок и маленьких магнитных стрелок, указывающих направление линий магнитного поля. За это направление принято направление северного полюса магнитной стрелки.

Опыт Эрстэда. Магнитное поле тока

В начале XIX в. датский ученый Эрстэд сделал важное открытие, обнаружив действие электрического тока на постоянные магниты . Он поместил длинный провод вблизи магнитной стрелки. При пропускании по проводу тока стрелка поворачивалась, стремясь расположиться перпендикулярно ему (рис. 4 ). Это можно было объяснить возникновением вокруг проводника магнитного поля.

Магнитные силовые линии поля, созданного прямым проводником с током, представляют собой концентрические окружности, расположенные в перпендикулярной к нему плоскости, с центрами в точке, через которую проходит ток (рис. 5 ). Направление линий определяется правилом правого винта:

Если винт вращать по направлению линий поля, он будет двигаться в направлении тока в проводнике .

Силовой характеристикой магнитного поля является вектор магнитной индукции B . В каждой точке он направлен по касательной к линии поля. Линии электрического поля начинаются на положительных зарядах и оканчиваются на отрицательных, а сила, действующая в этом поле на заряд, направлена по касательной к линии в каждой ее точке. В отличие от электрического, линии магнитного поля замкнуты, что связано с отсутствием в природе «магнитных зарядов».

Магнитное поле тока принципиально ничем не отличается от поля, созданного постоянным магнитом. В этом смысле аналогом плоского магнита является длинный соленоид - катушка из провода, длина которой значительно больше ее диаметра. Схема линий созданного им магнитного поля, изображенная на рис. 6 , аналогична таковой для плоского магнита (рис. 3 ). Кружочками обозначены сечения провода, образующего обмотку соленоида. Токи, текущие по проводу от наблюдателя, обозначены крестиками, а токи противоположного направления - к наблюдателю - обозначены точками. Такие же обозначения приняты и для линий магнитного поля, когда они перпендикулярны плоскости чертежа (рис. 7 а, б).

Направление тока в обмотке соленоида и направление линий магнитного поля внутри него также связаны правилом правого винта, которое в этом случае формулируется так:

Если смотреть вдоль оси соленоида, то текущий по направлению часовой стрелки ток создает в нем магнитное поле, направление которого совпадает с направлением движения правого винта (рис. 8 )

Исходя из этого правила, легко сообразить, что у соленоида, изображенного на рис. 6 , северным полюсом служит правый его конец, а южным - левый.

Магнитное поле внутри соленоида является однородным - вектор магнитной индукции имеет там постоянное значение (B = const). В этом отношении соленоид подобен плоскому конденсатору, внутри которого создается однородное электрическое поле.

Сила, действующая в магнитном поле на проводник с током

Опытным путем было установлено, что на проводник с током в магнитном поле действует сила. В однородном поле прямолинейный проводник длиной l, по которому течет ток I, расположенный перпендикулярно вектору поля B, испытывает действие силы: F = I l B .

Направление силы определяется правилом левой руки :

Если четыре вытянутых пальца левой руки расположить по направлению тока в проводнике, а ладонь - перпендикулярно вектору B, то отставленный большой палец укажет направление силы, действующей на проводник (рис. 9 ).

Следует отметить, что сила, действующая на проводник с током в магнитном поле, направлена не по касательной к его силовым линиям, подобно электрической силе, а перпендикулярна им. На проводник, расположенный вдоль силовых линий, магнитная сила не действует.

Уравнение F = IlB позволяет дать количественную характеристику индукции магнитного поля.

Отношение не зависит от свойств проводника и характеризует само магнитное поле.

Модуль вектора магнитной индукции B численно равен силе, действующей на расположенный перпендикулярно к нему проводник единичной длины, по которому течет ток силой один ампер.

В системе СИ единицей индукции магнитного поля служит тесла (Тл):

Магнитное поле. Таблицы, схемы, формулы

(Взаимодействие магнитов, опыт Эрстеда, вектор магнитной индукции, направление вектора, принцип суперпозиции. Графическое изображение магнитных полей, линии магнитной индукции. Магнитный поток, энергетическая характеристика поля. Магнитные силы, сила Ампера, сила Лоренца. Движение заряженных частиц в магнитном поле. Магнитные свойства вещества, гипотеза Ампера)

Одним из многочисленных физических методов лечения является магнитотерапия, показания и противопоказания этого терапевтического метода следует хорошо изучить, прежде чем начать курс лечения. Используемое в лечении магнитное поле подразделяют на статическое (постоянные магниты) и динамическое. Динамическое магнитное поле, вызывается электрическим током, протекающим в проводнике. В настоящее время, оно находит широкое применение в дополнительном лечении многих заболеваний.

Магнитотерапия — метод лечения с использованием магнитного поля с частотой 0-50 Гц или 0-60 Гц и магнитной индукции со значениями в диапазоне от 0,5 до 10 (миллитесл). Терапия проводится с помощью статического и динамического магнитного поля.

В статическом магнитном поле главную роль играют различного рода магниты, которые в настоящее время не так часто применяются в лечении. Современная медицина использует лечебное воздействие динамического магнитного поля (импульсного или переменного тока), возникающего при участии электрического тока, проходящего через проводник.

Научно доказано, что дефицит электромагнитной энергии в организме отвечает за замедление процессов обмена веществ, транспортировки питательных веществ и снижение работоспособности нервной системы. Кроме того, именно с дефицитом энергии возникает общее снижение настроения, работоспособности и потеря естественной жизненной силы человека.

Дефицит энергии может вызвать гораздо более серьезные последствия для здоровья организма. Такое состояние может спровоцировать или усилить симптомы болезней сердца, воспалительных процессов, ревматизма, а также неврологические заболевания и многие другие недуги.

Доказано, что наиболее эффективным способом противодействия заболеваниям, вызванным нехваткой энергии, является магнитотерапия.

Этот метод вызывает смещение ионов, в результате чего увеличивается электроотрицательность внутри клетки, что позволяет более эффективное поглощение и использование ею кислорода. Этот процесс носит название гиперполяризации.

Действие магнитного поля является равномерным, благодаря чему энергия проникает через все ткани организма, доходя до самых глубоких слоев. Магнитная терапия — процедура совершенно безболезненная, не вызывающая никаких побочных эффектов даже в перспективе длительного лечения. Иногда в начале терапии наблюдается лишь временное и краткосрочное осложнение симптомов заболевания.

Как действует магнитное поле?

Применение магнитного поля вызывает изменения в каждой клетке и ткани организма, поскольку оно проникает через все тело человека. Любые ионы, которые находятся в клетках и коллоидных системах, чувствительны и подвержены воздействию магнитного поля. Под влиянием магнитного поля происходят следующие процессы:

  • ритмичное перемещение ионов в клетках человеческого тела;
  • гиперполяризация клеточной мембраны;
  • благотворное влияние на обмен веществ и энергетические процессы.

Импульсное магнитное поле приводит в свою очередь к:

  • нормализации электрического потенциала покоя клеточной мембраны;
  • улучшению динамики ионов, мигрирующих через мембрану;
  • улучшению использования кислорода через клетку;
  • повышению энергетического потенциала.

Что лечит магнитное поле?

В зависимости от показаний и особенностей организма в лечении подбирается определенная форма импульса (прямоугольная, треугольная или синусоидальная). При лечении магнитным полем предполагается, что:

  • прямоугольные импульсы применяются в момент, когда патологический процесс распространяется в костной ткани;
  • импульсы треугольной формы находят применение в лечении суставного хряща, связок и сухожилий;
  • импульсы синусоидальные применяется в ситуациях, когда требуют лечения мышцы и нервы.

Когда и в каком состоянии болезни можно применить магнитное поле? В случае острых состояний заболевания применяются частоты импульсов от 1-5 Гц, интенсивность магнитного поля 0,5-3 мТ (милитесел). В подострых состояниях лечение проводят при частоте 5-20 Гц, напряженности магнитного поля 3-5 мТ, при хронических болезненных состояниях применяются частоты от 20-50 Гц и напряженность магнитного поля 6-10 мТ.

Следует иметь в виду, что напряженность магнитного поля должна равняться 40 % от максимальной величины принятой дозы. Во время 2 курса лечения ее силу можно увеличить до 70 %, а на 3 курсе процедур ее увеличивают до полной дозы.

Время процедуры, проводимое с помощью магнитного поля, может составлять от 15 до 30 минут, но может длиться и до 1 часа. Процедуры выполняются сериями от 15 до нескольких десятков процедур. В течение первых 5 -10 процедур терапию применяют ежедневно, а потом можно проводить от 2-3 процедур в течение недели.

Кому можно, а кому не стоит?

Принципы лечения магнитным полем:

  • лечение с помощью магнитного поля должно проводиться в одно и то же время дня;
  • процедуры не следует применять во второй половине дня, или вечером, из-за возникновения сонливости, в то время как у пожилых людей, наоборот, бессонницы;
  • пациент должен перед проведением процедуры снять часы и все металлические предметы;
  • при лечении магнитным полем не нужно раздеваться, можно оставаться в одежде.

Показаниями для выполнения процедуры магнитным полем, являются следующие:

  • дегенеративные заболевания крупных суставов (конечностей) и суставов позвоночника;
  • воспаления суставов и околосуставных тканей;
  • ревматоидный артрит (РА);
  • посттравматические состояния и спортивные травмы: переломы (болезнь Зудека), вывихи, растяжения с повреждением мышц, связок и суставной сумки;
  • трудно заживающие раны, ожоги;
  • нарушения периферического кровообращения;
  • воспаление нервов (например, невралгии седалищного нерва);
  • остеопороз;
  • нарушения обмена веществ;
  • бронхит и синусит пазух носа;
  • воспаления яичников;
  • язвы и трофические изменения голеней.

Процедуры с применением магнитного поля являются безопасными.

Применение процедур даже в течение очень долгого времени не вызывает неблагоприятных последствий.

Следует, однако, иметь в виду, что существует возможность обострения заболеваний после первых нескольких процедур, которые со временем проходят.

Значительным облегчением для пациентов является возможность применения магнитотерапии при травмах без снятия повязки, и даже гипса.

К самым распространенным противопоказаниям для лечения магнитным полем, относятся:

  • беременность;
  • раковые болезни;
  • лечение ионизирующим излучением (лучевая терапия) и радиологические исследования;
  • имплантированные электронные имплантаты, например, кардиостимулятор;
  • тяжелые заболевания сердца и сердечно-сосудистой системы;
  • облитерирующий тромбофлебит;
  • склонность к кровотечениям;
  • активный туберкулез;
  • острые бактериальные и вирусные инфекции;
  • сахарный диабет;
  • тиреотоксикоз;
  • эпилепсии;
  • стригущий лишай.

Магнитотерапия имеет множество применений и незначительное число противопоказаний. Не следует применять магнитотерапию и в случае тяжелых системных заболеваний.

Терапия магнитным полем, имеет неоценимое значение в борьбе с длительными болевыми ощущениями. Показывает при этом отличные противовоспалительные свойства.

Применение магнитной терапии способствует общему расслаблению организма, и снижению чрезмерного мышечного напряжения. Она ускоряет и регулирует периферическое кровообращение и ускоряет обмен веществ, что применяется в лечебных процедурах для похудения тела. Применяя магнитотерапию после консультации со специалистом, вы сможете оздоровить свой организм.

Хорошо известно широкое применение магнитного поля в быту, на производстве и в научных исследованиях. Достаточно назвать такие устройства, как генераторы переменного тока, электродвигатели, реле, ускорители элементарных частиц и различные датчики. Рассмотрим подробнее, что собой представляет магнитное поле и как оно образуется.

Что такое магнитное поле - определение

Магнитное поле - это силовое поле, действующее на движущиеся заряженные частицы. Размер магнитного поля завит от скорости его изменения. Согласно этому признаку выделяют два типа магнитного поля: динамическое и гравитационное.

Гравитационное магнитное поле возникает только вблизи элементарных частиц и формируется в зависимости от особенностей их строения. Источниками динамического магнитного поля являются движущиеся электрические заряды или заряженные тела, проводники с током, а также намагниченные вещества.

Свойства магнитного поля

Великому французскому ученому Андре Амперу удалось выяснить два основополагающих свойства магнитного поля:

  1. Основное отличие магнитного поля от электрического и его основное свойство состоит в том, что оно носит относительный характер. Если вы возьмете заряженное тело, оставите его неподвижным в какой-либо системе отсчета и поместите рядом магнитную стрелку, то она будет, как обычно, указывать на север. То есть она не обнаружит никакого поля, кроме земного. Если же вы начнете перемещать это заряженное тело относительно стрелки, то она начнет поворачиваться - это говорит о том, что при движении заряженного тела возникает еще и магнитное поле, кроме электрического. Таким образом, магнитное поле появляется тогда и только тогда, когда есть движущийся заряд.
  2. Магнитное поле действует на другой электрический ток. Так, обнаружить его можно, проследив движение заряженных частиц, - в магнитном поле они будут отклоняться, проводники с током будут двигаться, рамка с током поворачиваться, намагниченные вещества смещаться. Здесь следует вспомнить магнитную стрелку компаса, обычно окрашенную в синий цвет, - ведь это просто кусочек намагниченного железа. Он всегда ориентируется на север, потому что Земля обладает магнитным полем. Вся наша планета является огромным магнитом: на Северном полюсе находится южный магнитный пояс, а на Южном географическом полюсе находится северный магнитный полюс.

Кроме этого, к свойствам магнитного поля относят следующие характеристики:

  1. Сила магнитного поля описывается магнитной индукцией - это векторная величина, определяющая, с какой силой магнитное поле влияет на движущиеся заряды.
  2. Магнитное поле может быть постоянного и переменного типа. Первое порождается не изменяющимся во времени электрическим полем, индукция такого поля также неизменна. Второе чаще всего генерируется при помощи индукторов, питающихся переменным током.
  3. Магнитное поле не может быть воспринято органами чувств человека и фиксируется только специальными датчиками.

Ученые из Национальной лаборатории высокого магнитного поля (MagLab) при Университете штата Флорида () создали самый мощный в мире сверхпроводящий магнит. Устройство диаметром не больше сантиметра и размером не больше ролика для туалетной бумаги (не знаю почему, но создатели проводят именно такую аналогию) способно генерировать рекордную напряженность магнитного поля в 45,5 тесла. Это более чем в 20 раз мощнее магнитов больничных аппаратов магнитно-резонансной томографии. Отмечается, что ранее только импульсные магниты, способные поддерживать магнитное поле в течение доли секунды, достигали более высокой интенсивности.

Все в этой Вселенной движется и не стоит на месте. вращаются вокруг звезд, звезды вращаются вокруг галактических центров, а сами галактики перемещаются в межгалактическом пространстве. Некоторые двигаются в одиночку, но гравитация заставляет большинство галактик формироваться в группы, называемые галактическими скоплениям. Протяженность таких галактических скоплений может составлять десятки миллионов световых лет. Благодаря этому скопления являются одними из крупнейших структур в известной Вселенной.