Растворенных в воде твердых веществ. Растворимость твердых веществ в воде

Способность вещества растворяться в воде или другом растворителе называется растворимостью. Количественной характеристикой растворимости является коэффициент растворимости, который показывает, какая максимальная масса вещества может раствориться в 1000 или 100 г воды при данной температуре. Растворимость вещества зависит от природы растворителя и вещества, от температуры и давления (для газов). Растворимость твердых веществ в основном увеличивается при повышении температуры. Растворимость газов с повышением температуры уменьшается, но при повышении давления увеличивается.

По растворимости в воде вещества делят на три группы:

  • 1. Хорошо растворимые (р.). Растворимость веществ больше 10 г в 1000 г воды. Например, 2000 г сахара растворяется в 1000 г воды, или в 1 л воды.
  • 2. Малорастворимые (м.). Растворимость веществ от 0,01 г до 10 г вещества в 1000 г воды. Например, 2 г гипса (CaS04 * 2Н20) растворяется в 1000 г воды.
  • 3. Практически нерастворимые (н.). Растворимость веществ меньше 0,01 г вещества в 1000 г воды. Например, в 1000 г воды растворяется 1,5 * 10_3 г AgCl.

При растворении веществ могут образоваться насыщенные, ненасыщенные и пересыщенные растворы.

Насыщенный раствор - это раствор, который содержит максимальное количество растворяемого вещества при данных условиях. При добавлении вещества в такой раствор вещество больше не растворяется.

Ненасыщенный раствор -- это раствор, который содержит меньше растворяемого вещества, чем насыщенный при данных условиях. При добавлении вещества в такой раствор вещество еще растворяется.

Иногда удается получить раствор, в котором растворенного вещества содержится больше, чем в насыщенном растворе при данной температуре. Такой раствор называется пересыщенным. Этот раствор получают при осторожном охлаждении насыщенного раствора до комнатной температуры. Пересыщенные растворы очень неустойчивы. Кристаллизацию вещества в таком растворе можно вызвать путем потирания стеклянной палочкой стенок сосуда, в котором находится данный раствор. Этот способ применяется при выполнении некоторых качественных реакций.

Растворимость вещества может выражаться и молярной концентрацией его насыщенного раствора.

Скорость процесса растворения зависит от растворяемых веществ, состояния их поверхностей, температуры растворителя и концентрации конечного раствора.

Не следует смешивать понятия « насыщенный» и «разбавленный» раствор. Например, насыщенный раствор хлорида серебра (1.5*10-3г/л) явл. весьма разбавленным, а ненасыщенный р-р сахара(1000г/л)- концентрированным.

Концентрация растворов и способы ее выражения

Согласно современным представлениям, количественный состав раствора можно выражать как с помощью безразмерных величин, так и величин имеющих размерность. Безразмерные величины обычно называют долями. Известны 3 вида долей: массовая (щ), объемная (ц), молярная (ч)

Массовая доля растворенного вещества - это отношение массы растворенного вещества X к общей массе расвора:

щ (Х) = т(Х)/т

где щ(Х) - массовая доля растворенного вещества X, выраженная в долях единицы; т(Х) -- масса растворенного вещества X, г; т - общая масса раствора, г.

Если массовая доля растворенного хлорида натрия в растворе равна 0,03, или 3 % , то это означает, что в 100 г раствора содержится 3 г хлорида натрия и 97 г воды.

Объемная доля вещества в растворе - отношение объема растворенного вещества к сумме объемов всех веществ, участвующих в образовании раствора (до их смешения)

ц(Х)= V(Х)/ ?V

Молярная доля вещества в растворе - это отношение количества вещества к сумме количеств всех веществ, находящихся в растворе.

ч(Х)=п(Х)/ ?п

Из всех видов долей в аналитической химии чаще всего используют массовую долю. Объемную долю обычно применяют для растворов газообразных веществ и жидкостей(в фармации для растворов этилового спирта) Численное значение выражается в долях единицы и находятся в пределах от 0(чистый растворитель) до 1(чистое вещество. Как известно, сотая часть единицы называется процентом. Процент - это не единица измерения, а всего лишь синоним понятия «одна сотая». Н-р, если массовая доля NaOH в некотором растворе равна 0,05, то вместо пяти сотых можно использовать величину 5%. Проценты не могут быть массовыми, объемными или молярными, а могут лишь быть рассчитаны по массе, объему или количеству вещества.

Массовую долю можно выражать также в процентах.

Н-р, 10%-ный раствор едкого натра содержит в 100г раствора 10г NaOH и 90г воды.

Смас(Х) = т(Х)/тсм·100 %.

Объемный процент - процентная доля объема вещества, содержащаяся в общем объеме смеси. Указывает количество миллилитров вещества в 100 мл объема смеси.

Соб%= V/ Vсм * 100

Зависимость между объемом и массой раствора (т) выражается формулой

где с - плотность раствора, г/мл; V - объем раствора, мл.

К размерным величинам, используемым для описания количественного состава растворов, относят концентрацию вещества в растворе (массовую, молярную) и моляльность растворенного вещества.Если раньше концентрациями вещества называли любые способы описания количественного состава раствора, то в наши дни это понятие стало более узким.

Концентрация-это отношение массы или количества растворенного вещества к объему раствора. Т.о., массовая доля - это, согласно современнму подходу, уже не концентрация и называть ее процентной концентрацией не следует.

Массовой концентрацией называют отношение массы растворенного вещества к объему раствора. Обозначают данный вид концентрации как г(Х),с(Х) или чтобы не перепутать с плотностью раствора, с*(Х)

Единицей измерения массовой концентрации является кг/м3 или, что то же самое, г/л. Массовая концентрация, имеющая размерность г/мл, называется титром раствора

Молярная концентрация - С(Х) - представляет собой отношение количества растворенного вещества (моль) к объему раствора (1л) Рассчитывается как отношение количества вещества п (X), содержащегося в растворе, к объему этого раствора V:

С(Х) = п(Х)/ Vp= т(Х)/М(Х)V

где т(Х) - масса растворенного вещества, г; М(Х) - молярная масса растворенного вещества, г/моль. Молярную концентрацию выражают в моль/дм3 (моль/л). Чаще всего применяется единица измерения моль/л. Если в 1 л раствора содержится 1 моль растворенного вещества, то раствор называется молярным (1 М). Если в 1 л раствора содержится 0,1 моль или 0,01 моль растворенного вещества, то раствор соответственно называется децимолярным (0,1 М), сантимолярным (0,01 М), 0.001 моль- миллимолярным (0.001М)

Единица измерения молярной концентрации- моль/м3, но на практике обычно пользуются кратной единицей - моль/л. Вместо обозначения «моль/л» можно использовать «М» (причем слово раствор писать уже не нужно) Например, 0,1 М NaOH означает тоже самое, что и С(NaOH)=0,1 моль/л

Моль - единица химического количества вещества. Моль-порция вещества (т.е. такое его количество), которое содержит столько же структурных единиц, сколько атомов содержится в 0,012 кг углерода. В 0,012 кг углерода содержится 6,02*1023 атомов углерода. И эта порция составляет 1 моль. Столько же структурных единиц содержится в 1 моль любого вещества. т.е моль - это количество вещества, содержащее 6,02*1023 частиц. Эта величина получила название постоянной Авогадро

Химическое количество любых веществ содержит одно и то же число структурных единиц. Но у каждого вещества его структурная единица имеет свою собственную массу. Поэтому и массы одинаковых химических количеств различных веществ тоже будут различны.

Молярная масса - это масса порции вещества химическим количеством 1 моль. Она равна отношению массы m вещества к соответствующему количеству вещества n

В Международной системе единиц молярная масса выражается в кг/моль, но в химии чаще используют г/моль

Следует отметить. Что молярная масса численно совпадает с массами атомов и молекул (в а.е.м.) и с относительными атомными и молекулярными массами.

В отличие от твердых веществ и жидких, все газообразные вещества химическим количеством 1 моль занимают одинаковый объем (при одинаковых условиях) Эта величина наз-ся молярным объемом и обозначается

Т.к. объем газа зависит от температуры и давления, то при проведении расчетов берутся объемы газов при нормальных условиях (0?C и давлении 101,325 кПа) Установлено, что при н.у. отношение объема любой порции газа к химическому количеству газа есть величина постоянная равная 22,4 дм3/моль, т.о. Молярный объем любого газа при нормальных условиях = 22,4 дм3/моль

Связь между молярной массой, молярным объемом и плотностью (массой литра)

с= М/ Vm, г/дм3

Понятие молярная концентрация может относиться как к молекуле или формульной единице растворенного вещества, так и к его эквиваленту. С принципиальной точки зрения не важно, о чем идет речь: о концентрации молекул серной кислоты - С(Н2SO4) или « половинок молекул серной кислоты» - С(1/2 Н2SO4). Молярная концентрация эквивалента вещества раньше называлась нормальной концентрацией. Кроме того, молярную концентрацию часто называли молярностью, хотя такой термин использовать не рекомендуется (его можно перепутать с моляльностью)

Моляльность растворенного вещества представляет собой отношение количества вещества, находящегося в растворе к массе растворителя. Обозначают моляльность как m(Х), b(X),Cm(X):

Cm(X)= п(Х)/ mS

Размерность моляльности - моль/кг. Моляльность, согласно современной терминологии не является концентрацией. Её используют в тех случаях, когда раствор находится в неизотермических условиях. Изменение температуры влияет на объем раствора и приводит, тем самым, к изменению концентрации - моляльность же при этом остается постоянной.

Для количественной характеристики стандартных растворов обычно используют молярную концентрацию (вещества или эквивалента вещества

Нормальность растворов. Грамм-эквивалент.

Концентрацию растворов в титриметрическом анализе часто выражают через титр, т.е. указывают, сколько граммов растворенного вещества содержится в 1 мл раствора. Еще удобнее выражать ее через нормальность.

Нормальность называется число, показывающее, сколько грамм-эквивалентов растворенного вещества содержится в 1 л раствора.

Грамм-эквивалентом (г-экв) какого-либо вещества называется количество граммов его, химически равноценное (эквивалентное) одному грамм-атому водорода в данной реакции.

Сп = пэкв/V; Сп = z·n/V,

Где пэкв-число эквивалентов растворенного вещества, пэкв = z·n, V - объем раствора в литрах, п - число молей растворенного вещества, z·- эффективная валентность растворенного вещества

Для нахождения грамм-эквивалента нужно написать уравнение реакции и вычислить, сколько граммов данного вещества отвечает в нем 1 грамм-атому водорода.

Например:

HCl + KOH KCl +H2O

Один грамм-эквивалент кислоты равняется одной грамм-молекуле - моль (36,46 г) HCl, так как именно это количество кислоты соответствует при реакции одному грамм-атому водорода, взаимодействующему с ионами гидроксила щелочи.

Соответственно грамм-молекула H2SO4 при реакциях:

H2SO4 + 2NaOH Na2SO4 + 2H2O

Отвечает двум грамм-атомам водорода. Следовательно, грамм-эквивалент H2SO4 равен? грамм-молекулы (49,04 г).

В отличие от грамм-молекулы грамм-атом это число не постоянное, а зависит от реакции, в которой данное вещество участвует.

Поскольку один грамм-атом ОН- реагирует с одним грамм-атомом Н+ и, следовательно, эквивалентен последнему, грамм-эквиваленты оснований находятся аналогично, но с той лишь разницей, что грамм-молекулы их приходится в этом случае делить на число участвующих в реакции ОН- -ионов.

Наряду с грамм-эквивалентом в аналитической химии часто пользуются понятием миллиграмм-эквивалент. Миллиграмм-эквивалент (мг-экв) равен тысячной доле грамм-эквивалента (Э:1000) и представляет собой эквивалентный вес вещества, выраженный в миллиграммах. Например, 1 г-экв HCl равен 36,46 г, а 1 мг-экв HCl составляет 36,46 мг.

Из понятия об эквиваленте как о химически равноценном количестве следует, что грамм-эквиваленты представляют собой как раз те весовые количества, которыми они вступают в реакцию друг с другом.

Очевидно, что 1 мг-экв указанных веществ, составляющий 0,001 г-экв, находится в 1 мл однонормальных растворов этих веществ. Следовательно, нормальность раствора показывает, сколько грамм-эквивалентов вещества содержится в 1 литре или сколько миллиграмм-эквивалентов его содержится в 1 мл раствора. Нормальность растворов обозначается буквой н. Если в 1 л раствора содержится 1 г-экв. вещества, то такой раствор называется 1 нормальным (1 н), 2 г-экв - двухнормальным(2 н), 0.5 г-экв - полунормальным, 0.1г-экв - децинормальным(0.1н), 0.01 г-экв - сантинормальным, 0.001г-экв - миллинормальным (0.001н). Разумеется, нормальность раствора, кроме того, показывает и число миллиграмм-эквивалентов растворенного вещества в 1 мл раствора. Например, 1н р-р содержит 1 мг-экв, а 0.5 н- 0.5 мг-экв растворенного вещества в 1 мл.Приготовление нормальных растворов требует умения вычислять грамм-эквиваленты кислоты, основания или соли.

Грамм-эквивалентом называется число граммов вещества, химически равноценное (т.е. эквивалентное) одному грамм-атому или грамм-иону водорода в данной реакции.

Н-р: HCl + NaOH= NaCl+H2O

Видно, что одна грамм-молекула НСl участвует в реакции одним грамм-ионом Н+, взаимодействующим с ионом ОН-. Очевидно, в этом случае грамм-эквивалент НСl равен ее грамм-молекуле и составляет 36,46 г.Однако грамм-эквивалент кислот, оснований и солей зависят от течения реакций, в которых они участвуют. Для вычисления их пишут в каждом случае уравнение и определяют, сколько граммов вещества соответствует 1 грамм-атому водорода в данной реакции. Н-Р, молекулы ортофосфорной кислоты H3PO4 ,участвуя в реакции

H3PO4 + NaOH=NaH2PO4+ H2O

Отдает только один ион Н+ и грамм-эквивалент её равен грамм-молекуле (98,0г).В реакции

H3PO4 + 2NaOH = Na2HPO4+ 2H2O

каждая молекула соответствует уже двум грамм-ионам водорода. Поэтому грамм-экв. Её равен? грамм-молекулы, т.е 98:2=49г

Наконец, молекула H3PO4 может участвовать в реакции и тремя ионами водорода:

H3PO4 + 3NaOH=Na3PO4+ 3H2O

понятно, что в этой реакции грамм-молекула H3PO4 равноценна трем грамм-ионам Н+ и грамм-эквивалент кислоты равен 1/3 грамм-молекулы, т.е. 98:3=32.67г

Грамм-экв-ты оснований также зависят от характера реакции. Вычисляя грамм-эквивалент основания, обычно делят грамм-молекулу его на число ионов ОН-, участвующих в реакции, т.к. один грамм-ион ОН- эквивалентен одному грамм-иону Н+, Поэтому исходя из уравнений

Порядок пересчета из одного вида концентрации в другой. Расчеты с использованием молярной концентрации

В большинстве случаев при расчетах с использованием молярной концентрации исходят из пропорций, связывающих молярную концентрацию и молярную массу

Где С(Х) - концентрация раствора в моль/л;М-молярная масса, г/моль; m(Х)/ - масса растворенного вещества в граммах, п (Х)- количество растворенного вещества в молях, Vp - объем раствора в литрах.. Пример, рассчитать молярную концентрацию 2 л 80 г NaOH.

С(Х) = m(Х)/М Vp; М = 40 г/моль; С(Х)= 80г/40г/моль*2л=1 моль/л

Расчеты с использованием нормальности

Где Сп - концентрация раствора в моль/л; М-молярная масса, г/моль; m(Х)/ - масса растворенного вещества в граммах, п (Х)- количество растворенного вещества в молях, Vp - объем раствора в литрах.

Концентрация растворов и способы её выражения (Химический анализ в теплоэнергетике, Москва. Издательский дом МЭИ, 2008г)

Количественные соотношения между массами реагирующих веществ выражаются законом эквивалентов. Химические элементы и их соединения вступают в химические реакции друг с другом в строго определенных массовых количествах, соответствующих их химическим эквивалентам.

Пусть в системе протекает следующая реакция:

аХ+ b Y > Продукты реакции.

Уравнение реакций можно также записать в виде

X + b/a·Y > Продукты реакции,

которое обозначает, что одна частица вещества X эквивалентна b/a частиц вещества Y.

Отношение

Фактор эквивалентности, безразмерная величина, не превышающая 1. Его употребление как дробной величины не совсем удобно. Чаще используют величину, обратную фактору эквивалентности -- число эквивалентности (или эквивалентное число) z;

Значение z определяют по химической реакции, в которой участвует данное вещество.

Существуют два определения эквивалента:

  • 1. Эквивалент -- это некая реальная или условная частица, которая может присоединять, высвобождать или каким-либо другим образом быть эквивалентна одному иону водорода в реакциях кислотно-основного взаимодействия или одному электрону в окислительно-восстановительных реакциях.
  • 2. Эквивалент -- условная частица вещества, в z раз меньшая, чем соответствующая ей формульная единица. Формульные единицы в химии -- это реально существующие частицы, такие, как атомы, молекулы, ионы, радикалы, условные молекулы кристаллических веществ и полимеров.

Единицей количества вещества эквивалентов является моль или ммоль (ранее г-экв или мг-экв). Необходимая для расчетов величина -- молярная масса эквивалента вещества Мэкв(Y), г/моль, равная отношению массы вещества mY к количеству вещества эквивалентов nэкв(Y):

Мэкв(Y) = mY / nэкв(Y)

так как nэкв

следовательно

Мэкв(Y) =МY / zY

где МY -- молярная масса вещества Y, г/моль; nY -- количество вещества Y, моль; zY -- число эквивалентности.

Концентрация вещества -- физическая величина (размерная или безразмерная), определяющая количественный состав раствора, смеси или расплава. Для выражения концентрации раствора применяются различные способы.

Молярная концентрация вещества В или концентрация количества вещества - отношение количества растворенного вещества В к объему раствора, моль/дм3,

Св = nв /Vp = mв /Мв Vp

где nв -- количество вещества, моль; Vp -- объем раствора, дм3; МB -- молярная масса вещества, г/моль; mB -- масса растворенного вещества, г.

Удобна в использовании сокращенная форма записи единицы молярной концентрации М = моль/дм3.

Молярная концентрация эквивалентов вещества В -- отношение количества эквивалентов вещества В к объему раствора, моль/дм3 ? н:

Сэкв (В)= n экв (В)/ Vp = mв /Мв Vp = mв·zв / Мв Vp

где nэкв -- количество вещества эквивалентов, моль; Мэкв -- молярная масса эквивалентов вещества, г/моль; zB -- число эквивалентности.

Применение терминов «нормальность» и «нормальная концентрация» и единиц измерения г-экв/дм3, мг-экв/дм3 не рекомендуется, как и символа N, для сокращенного обозначения молярной концентрации эквивалентов вещества.

Массовая концентрация вещества В -- отношение массы растворенного вещества В к объему раствора, г/дм3,

Массовая доля растворенного вещества В -- отношение массы растворенного вещества В к массе раствора:

Св = mв / mр = mв/ с Vp

где mр - масса раствора, г; с -- плотность раствора, г/см3.

Употребление термина «процентная концентрация» не рекомендуется.

Молярная доля растворенного вещества В -- отношение количества этого вещества к суммарному количеству всех веществ, входящих в состав раствора, включая растворитель,

XВ= nВ / ? ni , ? ni = nВ + n1 + n2 +.....+ ni

Моляльность вещества В в растворе -- количество растворенного вещества В, содержащегося в 1 кг растворителя, моль/кг,

Сm= nв / ms = mв / Мв· ms

где ms -- масса растворителя, кг.

Титр - Титр раствора вещества В -- концентрация стандартного раствора, равная массе вещества В, содержащегося в 1 см3 раствора, г/см3,

В данное время употребление многих терминов не рекомендуется, но в практике водоподготовки и на производстве специалисты применяют именно эти термины и единицы измерения, поэтому для устранения разночтений в дальнейшем будут применяться привычные термины и единицы измерения, а в скобках указываться новая терминология.

Согласно закону эквивалентов, вещества реагируют в эквивалентных количествах:

nэкв (Х) = nэкв(Y), а nэкв(Х) = Сэкв (Х)·Vx и nэкв(Y) = Сэкв (Y)·Vy

следовательно, можно записать

Сэкв (Х)·Vx = Сэкв (Y)·Vy

где nэкв(Х) и nэкв(Y) -- количества вещества эквивалентов, моль; Сэкв(Х) и Сэкв(Y) -- нормальные концентрации, г-экв/дм3 (молярные концентрации эквивалентов вещества, моль/дм3); VX и VY -- объемы реагирующих растворов, дм3.

Допустим, что необходимо определить концентрацию раствора титруемого вещества X-- Сэкв(Х). Для этого точно отмеряют аликвоту этого раствора VX. Затем проводят реакцию титрования раствором вещества Y концентрации Сэкв(Y) и отмечают, какой объем раствора израсходован на титрование VY -- титранта. Далее по закону эквивалентов можно рассчитать неизвестную концентрацию раствора вещества X:

Равновесие в растворах. Истинные растворы и суспензии. Равновесие в системе «осадок - насыщенный раствор». Химическое равновесие

Химические реакции могут протекать таким образом, что взятые вещества полностью превращаются в продукты реакции - как говорят, реакция идет до конца. Такие реакции называются необратимыми. Пример необратимой реакции - разложение перекиси водорода:

2Н2О2 = 2Н2О + О2 ^

Обратимые реакции одновременно протекают в 2 противоположных направлениях. т.к. полученные в результате реакции продукты взаимодействуют друг с другом с образованием исходных веществ.. Например: при взаимодействии паров йода с водородом при 300 ?C образуется иодистый водород:

Однако при 300?C йодистый водород разлагается:

Обе реакции можно выразить одним общим уравнением, заменив знак равенства знаком обратимости:

Реакция между исходными веществами называется прямой реакцией, и скорость ее зависит от концентрации исходных веществ. Химическая реакция между продуктами называется обратной реакцией, и скорость её зависит от концентрации исходных веществ. Химическая реакция между продуктами называется обратной реакцией, и скорость её зависит от концентрации полученных веществ. В начале обратимого процесса скорость прямой реакции максимальна, а скорость обратной равна нулю. По мере протекания процесса скорость прямой реакции уменьшается, т.к. концентрация взятых веществ уменьшается, а скорость обратной реакции увеличивается, поскольку увеличивается концентрация полученных веществ. Когда скорости обеих реакций станут равными, наступает состояние, называемое химическим равновесием. При химическом равновесии ни прямая, ни обратная реакции не прекращаются; обе они идут с одинаковой скоростью. Следовательно, химическое равновесие является подвижным, динамическим равновесием. На состояние химического равновесия роказывает влияние концентрация реагирующих веществ, температура,а для газообразных веществ -давлениев системе..

Изменяя эти условия, можно смещать равновесие вправо (при этом увеличиться выход продукта) или влево. Смещение хим. равновесия подчиняется принципу Ле-Шателье:

При установившемся равновесии произведение концентраций продуктов реакции, деленное на произведение концентраций исходных веществ(для данной реакции Т=соnst) представляет собой постоянную величину, называемую константой равновесия.

При изменении внешних условий химическое равновесие смещается в сторону той реакции, которая ослабляет это внешнее воздействие. Так, при повышении концентрации реагирующих веществ равновесие смещается в сторону образования продуктов реакции. Введение в равновесную систему дополнительных количеств любого из реагирующих веществ ускоряет ту реакцию, при которой оно расходуется. Увеличение концентрации исходных веществ смещает равновесие в сторону образования продуктов реакции. Увеличение концентрации продуктов реакции смещает равновесие в сторону образования исходных веществ.

Реакции, протекающие в процессе химического анализа. Виды реакций. Характеристика. Типы химических реакций

Химические реакции можно подразделить на четыре основных типа:

разложения

соединения

замещения

Реакцией разложения-

называется такая хим. реакция, в кот. из одного сложного вещ-ва получается два или неск. простых или сложных вещества:

2Н2О > 2Н2^ +O2^3

Реакцией соединения называется такая реакция, в рез-те ко-торой из двух или несколько простых или сложных веществ образуется одно более сложное вещество:

Реакцией замещения называется реакция, протекающая между простым и сложным веществами, при кот.

атомы прост. вещ-ва замещают атомы одного из элементов в сложном веществе:

Fe+CuCl2> Cu+FeCl2

Zn+CuCl2>ZnCl2+Cu

Реакцией обмена называ-ется реакция при которой два сложных вещества

обменивается своими составными частями, обра-зуя два новых вещества:

NaCl+AgNO3=AgCl+NaNO3

По выделению и поглощению энергии химические реакции делят на экзотермические, идущие с выделением теплоты в окружающую среду и эндотермические, идущие с поглощенитенм теплоты из окружающей среды

Наука о методах анализа состава анализируемого вещества, (в широком смысле) и о методах всестороннего химического исследования веществ, окружающих нас на Земле называют аналитической химией. Предметом аналитической химии является теория и практика разнообразных методов анализа. Анализ того или иного вещества проводят с целью установления его качественного или количественного химического состава.

Задачей качественного анализа является открытие элементов, иногда соединений, входящих в состав исследуемого вещества Количественный анализ дает возможность определить количественное соотношение этих компонентов.

В качественном анализе для установления состава анализируемого вещества к нему прибавляют другие вещества, вызывающие такие химические превращения, которые сопровождаются образованием новых соединений, обладающих специфическими свойствами:

  • - определенным физическим состоянием (осадок, жидкость, газ)
  • - известной растворимостью в воде, кислотах, щелочах и др. растворителях
  • - характерным цветом
  • - кристаллической или аморфной структурой
  • - запахом

Качественный анализ при исследовании состава неизвестного вещества всегда предшествует количественному, т.к. выбор метода количественного определения составных частей анализируемого вещества зависит от данных, полученных при помощи качественного анализа. Результаты качественного анализа не дают возможности судить о свойствах исследуемых материалов, так как свойства определяются не только тем, из каких частей состоит исследуемый объект, но и их количественным соотношением. Приступая к количественному анализу, необходимо точно знать качественный состав исследуемого вещества; зная качественный состав вещества и примерное содержание компонентов, можно правильно выбрать метод количественного определения интересующего нас элемента.

На практике, стоящая перед аналитиком задача обычно значительно упрощается благодаря тому, что качественный состав большинства исследуемых материалов хорошо известен

Методы количественного анализа

Методы количественного анализа в зависимости от характера экспериментальной техники, применяемой для конечного определения составных частей анализируемого вещества делят на 3 группы:

  • - химические
  • - физические
  • - физико-химические(инструментальные)

Физические методы - методы анализа, при помощи которых можно определять состав исследуемого вещества, не прибегая к использованию химических реакций. К физическим методам относятся:

  • - спектральный анализ- основан на исследованиях спектров испускания (или излучения и поглощения исследуемых веществ)
  • - люминисцентный (флуоресцентный) - анализ, основанный на наблюдении люминисценции (свечения) анализируемых веществ, вызываемый действием ультрафиолетовых лучей
  • - ренгеноструктурный-основанный на использовании рентгеновских лучей для исследования строения вещества
  • - масс-спектрометрический анализ
  • - методы, основанные на измерении плотности исследуемых соединений

Физико-химические методы основаны на изучении физических явлений, которые происходят прихимических ракциях, сопровождающихся изменением цвета раствора, интенсивности окраски (колориметрия), электропроводности (кондуктометрия)

Химичечкие методы основаны на использовании химических свойств элементов или ионов.

Химические

Физико-химические

Гравиметрический

Титриметрический

Колориметрический

Электрохимический

Метод количественного анализа,заключается в точном измерении массы определяемого компонента пробы, выделенного в виде соединения известного состава или в форме элемента. Классическое название весовой метод

Метод количественного анализа основан на измерении объема (или массы) раствора реактива известной концентрации, расходуемого для реакции с определяемым веществом. Подразделяются по типу реакций на 4 метода:

  • - кислотно-основной (щелочность, кислотность)
  • - окислительно-восстановительный (бихроматный - вещество титруется раствором двухромовокислого калия, перманганатометрия, иодометрия) - комплексометрический:
  • (титрант Трилон Б)

Метод количественного анализа основанный на оценке интенсивности окраски раствора (визуально или с помощью соответствующих приборов). Фотометрические определение возможно лишь при условии, что окраска раст-воров не слишком интен-сивна, поэтому для таких измерений применяют сильно разбав-ленные растворы. На практике фотометрические определе-ниями особенно часто пользуются тогда, когда содержание соответствующего элемента в исследуемом объекте мало и когда методы гравиметриического и титри-метрического анализа оказываются непригодными. Широкому распространению фотометрического метода способствует быстрота выполнения определения.

Метод количественного анализа, в нем сохраняется обычный принцип титриметричес-ких определений, но момент окончания соответствующей реак-ции устанавливают путем измерения электропроводимости раствора (кондукто-метрический метод), либо путем измерения потенциала того или иного электрода, погруженного в исследуемый раствор (потенциометрический метод)

В количественном анализе различают макро-, микро- и полу микро- методы.

При макроанализе берут сравнительно большие (около 0,1 г и более) навески исследуемого твердого вещества или большие объемы растворов (несколько десятков миллилитров и более). Основным рабочим инструментом в этом методе являются аналитические весы, позволяющие взвешивать с точностью до 0,0001-0,0002 г в зависимости от конструкции весов (т.е. 0,1-0,2 мг).

В микро- и полумикрометодах количественного анализа используют навески от 1 до 50 мг и объемы раствора от десятых долей миллилитра до нескольких миллилитров. для этих методов применяют более чувствительные весы, например микровесы (точность взвешивания до 0,001 мг) а также более точную аппаратуру для измерения объемов растворов.

Объемный анализ, сущность и характеристика метода. Понятие о титровании, титре. Общие приемы титрования, способы установки титра

Титриметрический (объемный)анализ Сущность анализа.

Титриметрический анализ в отношении скорости выполнения дает огромное преимущество по сравнению с гравиметрическим анализом. При титриметрическом анализе измеряют объем затрачиваемого на проведение реакции раствора реагента, концентрация (или титр) которого всегда точно известна. Под титром обычно понимают число граммов или миллиграммов растворенного вещества, содержащееся в 1 мл раствора. Таким образом, в титриметрическом анализе количественное определение химических веществ осуществляется чаще всего путем точного измерения объемов растворов двух веществ, вступающих между собой в реакцию.

При анализе титрованный раствор реактива помещают в измерительный сосуд, называемый бюреткой, и понемногу приливают его к исследуемому раствору, до тех пор, пока тем или иным способом не будет установлено, что затраченное количество реактива эквивалентно количеству определяемого вещества. Эта операция называется титрованием

Титруемым веществом называют вещество, концентрацию раствора которого необходимо установить. При этом объем раствора титруемого вещества должен быть известен.

Титрантом называют раствор реагента, используемый для титрования, концентрация которого известна с высокой точностью. Его часто называют стандартным (рабочим) или титрованным раствором.

Раствор можно приготовить несколькими способами:

  • - по точной навеске исходного вещества (в качестве исходных веществ можно использовать только химически чистые устойчивые соединения, состав которых строго соответствует химической формуле, а также легко очищаемые вещества);
  • - по фиксаналу (по строго определенному количеству вещества, обычно 0,1 моль или его доля, помещенному в стеклянную ампулу);
  • - по приблизительной навеске с последующим определением концентрации по первичному стандарту (необходимо иметь первичный стандарт -- химически чистое вещество точно известного состава, отвечающее соответствующим требованиям);
  • - путем разбавления заранее приготовленного раствора с известной концентрацией.

Титрование -- основной прием титриметрического анализа, заключающийся в постепенном прибавлении раствора реагента известной концентрации из бюретки (титранта) к анализируемому раствору до достижения точки эквивалентности. Часто фиксирование точки эквивалентности. оказывается возможным благодаря тому, что окрашенный реагент в процессе реакции изменяет свою окраску (при титровании окисляемости). Или в исследуемый раствор добавляются вещества, претерпевающие какое-либо изменение при титровании и тем самым позволяющие фиксировать точку эквивалентности, эти вещества называются индикаторами. Основной характеристикой индикаторов принято считать не значение конечной точки титрования, а интервал перехода окраски индикатора. Изменение окраски индикатора становится заметным для человеческого глаза не при конкретном значении рТ,

Интервал перехода кислотно-основных индикаторов

Индикатор

перехода, рН

Кислотная форма

Основная форма

Ализариновый желтый

Фиолетовая

Тимолфталеин

Бесцветная

Фенолфталеин

Бесцветная

Крезоловый пурпурный

Пурпурная

Феноловый красный

Бромтимоловый синий

Метиловый красный

Метиловый оранжевый

Бромфеноловый синий

Однако, даже при наличии индикаторов применение их не всегда возможно. Обычно нельзя титровать с индикаторами сильно окрашенные или мутные растворы, так как перемена окраски индикатора становится трудно различимой.

В таких случаях точку эквивалентности иногда фиксируют по изменению некоторых физических свойств раствора при титровании. На этом принципе основаны электротитриметрические методы анализа. Например, кондуктометрический метод, при котором точку эквивалентности находят, измеряя электропроводность раствора; потенциометрический метод, основанный на измерении окислительно-восстановительного потенциала раствора (метод потенциометрического титрования).

Кроме того, необходимо, чтобы прибавляемый титрованный раствор реактива расходовался исключительно на реакцию с определяемым веществом, т.е. при титровании не должны протекать побочные реакции, делающие точное вычисление результатов анализа невозможным. Точно так же необходимо отсутствие в растворе веществ, мешающих течению реакции или препятствующих фиксированию точки эквивалентности.

В качестве реакции можно использовать только те химические взаимодействия между титруемым веществом и титрантом, которые отвечают следующим требованиям:

  • 1) реакция должна быть строго стехиометрической, т.е. химический состав титруемого вещества, титранта и продуктов реакции должен быть строго определен и неизменен;
  • 2) реакция должна протекать быстро, поскольку в течение длительного времени в растворе могут произойти изменения (за счет конкурирующих реакций), природу и влияние которых на основную реакцию титрования достаточно сложно предугадать и учесть;
  • 3) реакция должна протекать количественно (по возможности полностью), т.е. константа равновесия реакции титрования должна быть как можно выше;
  • 4) должен существовать способ определения конца реакции. .

В титриметрии различают следующие варианты титрования:

  • - метод прямого титрования. Титрант непосредственно добавляют к титруемому веществу. Данный метод применяют, если все требования, предъявляемые к реакции титрования выполняются;
  • - метод обратного титрования. К титруемому веществу прибавляют заведомый избыток титранта, доводят реакцию до конца, а затем титруют избыток не прореагировавшего титранта другим титрантом, т.е. титрант, используемый в первой части опыта, сам превращается в титруемое вещество во второй части опыта. Данный метод применяют, если скорость реакции мала, не удается подобрать индикатор, наблюдаются побочные эффекты (например, потери определяемого вещества вследствие его летучести) или реакция происходит не стехиометрически; - метод косвенного титрования по заместителю. Производят сте-хиометрическую реакцию титруемого соединения с другим реагентом, а получившееся в результате этой реакции новое соединение титруют подходящим титрантом. Метод применяют, если реакция нестехиометрична или происходит медленно.

Познакомимся сначала с процессом растворения в воде твердых веществ, для чего обратимся опять к нашему стакану воды и посмотрим, что будет происходить, если мы всыплем в него ложку поваренной соли.

Находящиеся в непрерывном движении молекулы воды при столкновении с кристалликами соли будут как бы срывать с их поверхности отдельные молекулы соли, которые, попав в воду, начнут беспорядочное движение, подобно молекулам воды.

При этом, однако, они будут стремиться распределиться равномерно во всем объеме воды. Это свойство веществ называется диффузией, и, поскольку оно тесно связано с процессом растворения, необходимо остановиться на нем несколько подробнее.

Диффузией называют свойство вещества распространяться в какой-либо среде, т. е. стремление его проникнуть оттуда, где оно есть, туда, где его нет, причем этот процесс происходит исключительно за счет теплового беспорядочного движения молекул среды.

Представим себе, что непосредственно около дна стакана образовался некий слой воды, содержащий молекулы хлористого натрия.

Обозначим их условно точками, как это изображено на рис. 9, при этом этих молекул будет, естественно, особенно много непосредственно около поверхности кристаллов соли, далее, по мере удаления вверх, их число должно быть меньше.

Как же себя будут вести эти молекулы соли? Ведь, как мы уже знаем, их движение, обусловленное беспорядочным движением молекул воды, будет таким же беспорядочным и, следовательно, они будут продвигаться в воде в самых различных направлениях - иногда вниз, иногда вверх, а иногда в сторону или наискось.

Однако, как это ни может показаться на первый взгляд странным, несмотря на совершенно беспорядочное движение молекул соли, будет происходить постепенное закономерное движение их вверх из мест с более высокой их концентрацией в места с более низкой концентрацией, пока, наконец, молекулы соли не распространятся равномерно во всем объеме находящейся в стакане воды.

Для объяснения причины этого как будто неожиданного процесса, носящего название диффузии, рассмотрим, что будет происходить с молекулами соли на границе условно взятого в стакане сечения а-а (рис. 9).

Процесс диффузии не связан с какой-либо силой, которая якобы заставляет молекулы соли передвигаться вверх, т. е. в область с меньшей их концентрацией в воде.

Каждая молекула соли ведет себя независимо от других молекул соли, с которыми она встречается очень редко.

Каждая молекула соли, где бы она ни находилась -ниже сечения а-а или выше его, испытывает непрерывные толчки со стороны молекул воды, в результате которых она может продвигаться вниз от этого сечения или вверх от него.

Но тут вступает в силу теория вероятностей и ее основной закон больших чисел, широко применяемый в настоящее время естественными науками (и в первую очередь физикой и химией) при изучении свойств тел, состоящих из огромного числа отдельных частиц (молекул, атомов, ионов и др.).

Точность статистического закона больших чисел повышается по мере увеличения количества участвующих в данном явлении частиц и, наоборот, снижается с их уменьшением, вплоть до того, что при некотором их числе этот закон становится неприменимым и мы переходим в область чистой случайности.

Для пояснения этого положения можно прибегнуть к простому общедоступному опыту. Возьмем два одинаковых по размеру, но разных по окраске шарика: белый и черный.

Положим их в какую-нибудь урну или просто в шапку и будем последовательно вынимать один из этих шариков, каждый раз возвращая обратно вынутый шарик.

Поскольку шарики одинакового размера, по-видимому, имеется одинаковая возможность для каждого из них быть вынутым из урны. Но эта одинаковая возможность будет выявляться все в большей степени по мере увеличения числа опытов.

Если мы проведем два-три или даже пять опытов, то возможно, что 2-3 или даже 5 раз будет вынут только белый или только черный шарик.

Но для ста опытов такая вероятность становится невозможной, количество вынутых белых и черных шариков будет приближаться к пятидесяти.

При этом закон вероятности утверждает, что неточность, с какой мы можем определить среднее число случаев, в которых наступает данное явление, равно корню квадратному из количества этих случаев.

Вернемся теперь к нашему стакану с водой и растворенными в ней молекулами соли. Согласно теории вероятности возможности продвижения молекул соли вниз или вверх от сечения а-а будут одинаковы в силу того, что каждую молекулу соли окружает огромное количество молекул воды, от которых она испытывает колоссальное число толчков как вверх, так и вниз.

Но если все молекулы соли, находящиеся в стакане воды около сечения а-а, будут с одинаковой вероятностью перемещаться как вверх, так и вниз от этого сечения, то именно поэтому молекулы соли чаще будут пересекать сечение а-а снизу вверх, чем сверху вниз, поскольку ниже этого сечения концентрация молекул соли больше, чем над ним.

Такое преимущественное перемещение вверх молекул соли будет происходить до тех пор, пока не наступит равномерное распределение их во всем объеме воды.

Одновременно с процессом растворения соли происходит обратный процесс ее кристаллизации, так как в результате беспорядочного движения молекул соли некоторые из них, находящиеся вблизи поверхности кристаллов соли, при столкновении с нею могут задержаться на ней, восстанавливая, таким образом, частично разрушенный в результате процесса растворения кристалл.

Очевидно, что такая возможность обратного процесса будет возрастать по мере возрастания концентрации раствора.

Но по мере того как мы будем всыпать в наш стакан еще порции поваренной соли, наступит момент, когда растворение ее как бы прекратится, т. е. когда скорость обоих процессов (растворения и кристаллизации) выравняется, при этом в единицу времени будет столько же молекул переходить в раствор, сколько их выделится на кристаллах соли. Растворы, имеющие такую предельную концентрацию растворенного вещества, называют насыщенными растворами.

При достижении такого состояния в нашем стакане наступит так называемое динамическое равновесие между твердой солью и ее насыщенным раствором в воде, в результате которого нам будет казаться, что процесс растворения прекратился.

Чтобы убедиться в том, что в насыщенных водных растворах не прекращаются процессы растворения твердого вещества в воде и обратного его выделения из воды, достаточно провести следующий опыт.

После получения в нашем стакане насыщенного раствора хлористого натрия добавим в него некоторое количество кристаллов этой соли, содержащих радиоактивный натрий.

Тогда уже через несколько минут мы обнаружим с помощью специального счетчика (Гейгера-Мюллера), что в растворе появились радиоактивные атомы натрия, причем количество их будет постепенно нарастать, достигнув через несколько десятков минут наибольшего значения.

Этот опыт убедительно показывает, что в насыщенном растворе все время идет обновление кристаллов, т. е. переход молекул хлористого натрия с поверхности кристалла в насыщенный раствор и переход на их место молекул соли из раствора.

Процесс диффузии в растворах протекает относительно медленно, вследствие чего слой воды, непосредственно прилегающий к кристаллам соли, быстро становится насыщенным, после чего дальнейшее растворение происходит только по мере того, как из этого слоя диффундируют вверх растворенные молекулы соли.

Таким образом, процесс растворения соли быстро спадает и протекает так же медленно, как и диффузия растворенных молекул соли.

Поэтому для ускорения растворения прибегают к искусственному ускорению диффузии путем перемешивания раствора.

Растворение газов в воде происходит в основном аналогично растворению твердого тела, с тем лишь отличием, что проникновение в воду молекул твердого тела происходит путем отрыва их молекулами воды от кристаллов соли, находящихся в воде, а попадание в воду молекул газообразного вещества осуществляется в результате их беспорядочного движения над поверхностью воды, в результате чего некоторые из них попадают непосредственно на поверхность воды и, подвергаясь действию притягательных сил молекул воды, втягиваются внутрь.

Это втягивание молекул газа внутрь воды и является одним из существенных моментов процесса растворения газов в воде.

Дальнейшая судьба попавших в глубь воды молекул газа аналогична поведению растворенный молекул соли, которые, испытывая различные столкновения с окружающими их молекулами воды, совершают также беспорядочные движения.

Некоторые молекулы газа в результате этого движения между молекулами воды могут вновь очутиться на ее поверхности.

При благоприятном толчке этой молекулы по направлению к поверхности воды она может даже улететь из воды, или, очутившись на поверхности воды, эта молекула газа может освободиться в результате удачного толчка, который она получит от какой-либо подлетевшей другой молекулы газа, в противном случае эта молекула газа вновь будет втянута в глубь воды.

Таким образом, если мы имеем воду и находящийся над ней какой-либо газ, например кислород, то будут происходить одновременно два противоположных процесса: проникновение молекул кислорода в воду, т. е. его растворение в воде, и обратный процесс - вылетание молекул кислорода из воды.

По мере того как количество растворенных в воде молекул кислорода будет возрастать, будет соответственно увеличиваться возможность для некоторых из них вырваться из воды.

Наконец наступит момент, когда количество попадающих в воду молекул кислорода станет равным числу уходящих из воды молекул кислорода.

Следовательно, наступит аналогично системе кристаллы соли - насыщенный раствор так называемое динамическое равновесие, при котором процесс растворения кислорода в воде хотя и будет продолжаться, но количество молекул газа в воде будет неизменным.

Однако имеется и существенное отличие между системой кристаллы соли - насыщенный раствор ее в воде и системой газ - раствор газа в воде.

Дело в том, что максимальное количество молекул газа в нашем случае - кислорода, которое может быть растворено в воде, будет тем больше, чем больше этих молекул будет находиться над поверхностью воды и, следовательно, чем больше будет создаваться благоприятных столкновений молекул газа с водой и проникновение их в глубь ее.

В самом деле, вернемся к нашей системе кислород - раствор кислорода в воде, когда в ней наступило динамическое равновесие.

Что произойдет, если мы каким-либо путем увеличим количество находящегося над раствором кислорода, т. е. если мы увеличим количество молекул кислорода в единице объема пространства, находящегося над раствором?

Тогда количество молекул кислорода, попадающих в раствор, увеличится, в то время как количество молекул, вылетающих из него, остается пока еще тем же.

Следовательно, динамическое равновесие нарушится и начнется дальнейшее растворение молекул кислорода, пока в результате увеличения их в воде не наступит новое динамическое равновесие, которое будет отличаться от первого тем, что количество растворенных в воде молекул кислорода увеличится.

Итак, мы установили связь между количеством кислорода в единице объема над раствором и растворимостью кислорода в воде.

Но согласно молекулярно-кинетической теории давление газа, производимое им на стенки сосуда, в котором он находится, прямо пропорционально числу молекул в единице объема, т. е. чем больше молекул газа в единице объема, тем чаще эти молекулы будут ударяться о стенки сосуда, и, следовательно, тем большее давление они будут испытывать.

Отсюда можно сказать, что растворимость газа прямо пропорциональна его давлению. Эта связь между давлением газа и его растворимостью называется законом Генри-Дальтона.

Практически в большинстве случаев мы будем иметь дело не с одним каким-либо газом, а со смесью нескольких газов, и прежде всего с воздухом, представляющим собой смесь азота, кислорода, углекислого газа и др.

Как в этих условиях будет происходить растворение их в воде?

Совершенно очевидно, что вероятность проникновения молекул кислорода в воду будет, как и прежде, тем больше, чем больше этих молекул будет в единице объема пространства над водой, независимо от количества молекул других газов, т. е. опять будет действовать тот же закон Генри-Дальтона.

Но давление смеси газов слагается из давлений отдельных газов, определяемых соответственно числом молекул каждого газа.

При этом доля общего давления такой смеси газов, приходящаяся на отдельный газ, называется его парциальным давлением.

Следовательно, обобщая закон Генри - Дальтона и для смеси газов, можно сказать, что растворимость газов пропорциональна их парциальному давлению.

Познакомимся коротко с вопросом о влиянии на растворимость температуры. Для водных растворов твердых веществ в подавляющем большинстве случаев при повышении температуры растворимость более или менее увеличивается (вещества с положительным коэффициентом растворимости).

Однако некоторые вещества имеют отрицательный коэффициент растворимости, т. е. их растворимость в воде с повышением температуры понижается.

К таким веществам, в частности, относятся: гидрат окиси кальция Са(ОН) 2 и сернокислый кальций CaSО 4 *.

* Начиная с температуры 40° С и выше.

При повышении температуры в системе газ и его раствор в воде будет происходить, как мы уже знаем, увеличение интенсивности движения молекул, т. е. повышение числа быстрых молекул, что в свою очередь будет иметь два следствия.

С одной стороны это будет способствовать увеличению числа молекул газа, проникающих в воду, в то же время будет расти число молекул, могущих вырваться из воды.

В конечном итоге это приведет к понижению растворимости газа. Над водой всегда находится смесь газов, в том числе и некоторое количество паров воды.

При нагревании воды количество паров воды над ней начинает возрастать, за счет чего уменьшается количество остальных газов, а следовательно, уменьшается и их парциальное давление, вследствие чего растворимость остальных газов в воде заметно уменьшается, и тем больше, чем ближе температура воды к точке ее кипения.

При кипении над водой будет, по существу, находиться только один газ - пары воды, и, следовательно, парциальное давление других газов будет близким к нулю. Поэтому при кипении воды все растворенные в ней газы практически полностью удаляются.

Количество растворенного вещества, находящегося в единице объема или веса растворителя, называют концентрацией растворов.

Концентрацию водных растворов выражают обычно количеством граммов растворенного вещества в 1 л воды и обозначают сокращенно г/л, или в 1 м 3 воды - г/м 3 , а для малорастворимых веществ - в миллиграммах растворенного вещества, т. е. мг/л.

Выражают также концентрацию растворов в процентах, чаще в весовых процентах, т. е, указывают, сколько весовых частей безводного вещества растворяется в 100 весовых частях растворителя или сколько весовых частей безводного вещества растворено в 100 весовых частях раствора.

В химии воды имеет распространение удобная мера концентрации веществ, выражаемая количеством граммов или миллиграммов вещества в 1 л раствора, численно равная его эквивалентному весу и сокращенно обозначаемая соответственно г-экв/л или мг-экв/л.

Эта мера концентрации удобна тем, что химические элементы соединяются между собой в эквивалентных количествах.

Растворимостью данного вещества в воде называют предельное количество этого вещества, которое может быть растворено в воде при данных условиях, т. е. когда этот раствор становится насыщенным.

Поэтому растворимость всякого вещества определяется величиной концентрации его насыщенного раствора.

Внимание! Администрация сайта сайт не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

Автор - Севостьянова Людмила Николаевна, учитель химии высшей квалификационной категории муниципального автономного общеобразовательного учреждения средней школы №3 р.п. Ильиногорск, Володарского муниципального района Нижегородской области

Обозначение предметного содержания проекта. Учащиеся получают представление о растворении, как о физико-химическом процессе, понятии гидратах и кристаллогидратах, растворимости, кривых растворимости, как модели зависимости растворения от температуры, насыщенных, перенасыщенных и ненасыщенных растворах. Делают выводы о значении растворов для природы и сельского хозяйства.

Методическая разработка составлена на основе, программы основного общего образования по химии, учебно-методического комплекса О.С.. Габриеляна «Химия. 8-11 классы (Рабочие программы. Химия8-11 классы: учебно-методическое пособие/сост. Г.М. Пальдяева. – 2 изд., стереотип. М.: Дрофа, 2013). Данный концентрический курс соответствует Федеральному государственному образовательному стандарту основного общего образования, одобрен РАО и РАН, имеет гриф «Рекомендовано» и включен в Федеральный перечень учебников.

Согласно действующему Базисному учебному плану, рабочая программа для 8-го класса предусматривает обучение химии в объеме 2 часа в неделю.

Раздел. Растворение. Растворы. Свойства электролитов.

Тема. Растворимость. Растворимость веществ в воде.

Обоснование целесообразности данного предметного содержания для организации проектной/исследовательской деятельности обучающихся. Через организацию исследовательской деятельности сформировать представление о растворении, как о физико-химическом процессе. На основе знаний и умений, добытых в ходе активного поиска и самостоятельного решения проблемы, учащиеся учатся устанавливать межпредметные и причинно-следственные связи

Также данный проект, направленный на сформирование представления о физико-химическом процессе растворения, изучении растворимости различных веществ от различных условий обеспечивает развитие устойчивого интереса к химии.

Название проекта: «Растворы. Растворимость веществ в воде».

Описание проблемной ситуации, определение проблемы и цели проектного модуля. Учитель организует действия учащихся по выявлению и формулировке проблемы, предлагая учащимся провести мини-исследование «Приготовление водных растворов перманганата калия и серной кислоты». Учащиеся во время проведения опытов отмечают, что в процессе растворения веществ наблюдаются как признаки физического, так и признаки химического явления.

Учащиеся совместно с учителем формулируют противоречие.

Противоречие: В процессе растворения можно наблюдать с одной стороны признаки физических явлений, с другой - химических явлений.

Проблема: Процесс «растворение» - это процесс химический или физический? Можно ли влиять на этот процесс?

Описание проектного продукта/результата с критериями оценки.

Цель проектного модуля: доказать сущность процесса растворения и объяснить зависимость растворимости от различных факторов через создание ментальной карты «Растворимость веществ в воде».

Проектный продукт: ментальная карта «Растворимость веществ в воде».

Ментальная карта представляет собой систематизированный и представленный в наглядной форме материал. В центре записывается тема проекта «Растворимость веществ». Учащимся предлагается на основе проведенных мини-исследований сформулировать выводы и творчески оформить их в несколько блоков:

Каждый отдельный проектный продукт пары оценивается по следующим критериям.

  • Эстетичность оформления
  • Структурность оформления
  • Логичность оформления
  • Наглядность
  • 1 балл – представлен частично

Оценка «5» - 15-14 баллов

Оценка «4» - 13-11 баллов

Оценка «3»- 10-7 баллов

Оценка «2» -менее 7 баллов

Определение общего объема урочных часов, необходимых для реализации проекта, и его распределение по этапам проектной деятельности обучающихся с указанием действий педагога и обучающихся.

Проектный модуль включает 3 урока (3 часа проектного модуля реализуются за счет 1 часа, который отводится на изучение темы «Растворы. Растворимость веществ» и 2 часа за счет резервного времени):

Фазы ПД

Этапы ПД

Поурочное планирование

Проектирование

Актуализация

1 урок

Домашнее задание

Проблематизация

Целеполагание

Планирование

Концептуализация

Моделирование

Реализация

Разработка критериальной базы

2 урок

Домашнее задание

Реализация проектного продукта

Представление проектного продукта

Оценка

Рефлексия

Представление

3 урок

Домашнее задание

Защита проекта

Рефлексия

Диагностика уровня сформированности проектных действий

Поэтапное описание проектного модуля, действий обучающихся, действий педагога.

Этапы проектной деятельности

Деятельность учителя

Деятельность учащихся

Средства

Результат

1-й урок (подготовительный и проектировочный этапы): актуализация – проблематизация – целеполагания - планирование действий-концептуализация.

Актуализация имеющейся системы : предметных знаний и способов деятельности, метапредметных способов деятельности, ценностей и смыслов, связанных с содержанием модуля и самим процессом познания.

Организует повторение правил техники безопасности и поведения в кабинете химии.

Организует фронтальное выполнение заданий, направленных на усвоение темы

«Физические и химические явления»

Задает вопрос учащимся: «Как отличить химические явления от физических?», «Каковы признаки химических реакций?»

Отвечают на вопросы.

Просмотр в режиме «без звука» флеш - ролика «Признаки химических реакций». Указывают признаки химических реакций, комментируют свой ответ.

Рассуждают и делают вывод том, что химические явление характеризуются образованием новых веществ, с новыми признаками. Признаками химических реакций могут быть: появление запаха (выделение газа), образование осадка, изменение цвета.

Мультимедийный комплекс и интерактивной доской.

Материал Единой коллекции ЦОР

Выявлена граница «знания-незнания»

Проблематизация – определение проблемы проекта и причин, приводящий к появлению проблемы.

Организует действия учащихся по выявлению и формулировке противоречия и проблемы.

Проведение мини-исследования: «Приготовление водных растворов перманганата калия и серной кислоты»

Учащиеся, соблюдая правила техники безопасности выполняют мини-исследование №1: , описывают свои наблюдения, заполняют таблицу.

Растворение

Физическое явление

Химическое явление

1. Демонстрация растворения KМnО 4 в воде.

За счёт кого процесса происходит растворение? (диффузии).

Вещество из области более высокой его концентрации переходит в область более низкой концентрации. Процесс завершается выравниванием концентрации.

К каким явлениям относится диффузия? (физическим).

Какие выводы можно сделать по данному эксперименту?

2) Мы уже вспоминали о признаках химических реакций. Подумайте, можем ли мы пронаблюдать хотя бы один из этих признаков при растворении? (выдвижение версий).

Демонстрация растворения Н 2 SО 4 (конц.) (Наблюдается выделение и поглощение теплоты). Как называются подобные реакции (экзотермические и эндотермические).

3) Демонстрация растворения безводного СuSО 4 в воде. (Происходит изменение цвета).

Какие выводы можно сделать по данным экспериментам?

  1. Растворение результат диффузии.
  2. Растворы - это однородные смеси.

Значит, растворение – это физическое явление.

  1. Растворение- это химическое взаимодействие растворённого вещества с водой, называемое гидратацией.
  2. Растворы - химические соединения.

Значит, растворение - это химическое явление.

Противоречие: При растворении присутствуют признаки и физического и химического явления.

Проблема: К каким же явлениям относится процесс растворения, физическим или химическим, как можно описать процесс растворения веществ?

Алгоритм выполнения мини-исследования №1

Приложение №1

Оборудование и реактивы:: KМnО 4 , Н 2 SО 4 (конц.), безводный СuSО 4 , вода, пробирки, штатив.

Сформулирована проблема

Целеполагание – определение цели и задач проекта.

На основе сформулированной проблемы создает условия для формулировки цели и определения будущего проектного продукта

Формулируют цель проекта с помощью учителя: описать модель процесса растворения, определить факторы, влияющие на процесс растворения, провести классификацию растворов, указать значение и применение растворов. С помощью учителя определяют блоки ментальной карты:

1 блок: «Модель процесса растворения»

2 блок: «Зависимость процесса растворения от различных факторов»

3 блок: «Классификация растворов»

4 блок: «Значение и применение растворов»

Сформулирована цель общего проектного продукта.

Планирование действий

Создает условия для формирования проектных групп и распределение обязанностей внутри групп по выполнению проектных заданий

  1. Формирование проектных групп и распределение обязанностей.
  2. Сбор и преобразование информации.
  3. Выполнение практических заданий, формулирование выводов.
  4. Создание проектного продукта.
  5. Презентация полученного продукта и оценка его в соответствии с критериями.
  6. Контроль знаний.

Класс делится на 5 групп по 4-5 человек. Каждая группа выбирает руководителя.

Совместно с учителем проговаривают совместный план действий.

  1. Распределение обязанностей внутри группы
  2. Изучение текста параграфа, преобразование текстовой информации в логическую схему процесса растворения.
  3. Выполнение мини-исследований, формулирование выводов. Получение промежуточного продукта-отчетов мини-исследований
  4. Самостоятельное изучение вопросов классификации растворов и значение и применение растворов. Преобразование информации – составление схемы, кластера, таблицы, выбор самого оптимального
  5. Создание проектного продукта – ментальной карты
  6. Презентация в соответствии с критериями.
  7. Предметный контроль (выполнение теста), работа в рабочей тетради.

Сформированы группы учащихся для выполнения проекта.

Разработан план дальнейшей работы

Организует действия учащихся для работы в группах. Оказывает помощь в распределении обязанностей внутри группы

Предлагает работу в группах по единым заданиям: прочитать текст учебника с.186-188, оформить схему-модель процесса растворения.

Направляет группы на выполнение практического мини-исследования №2 «Наблюдение влияния природы растворенного вещества на процесс растворения»

Направляет группы на выполнение практического мини-исследования №3 «Наблюдение влияния природы растворителя на процесс растворения веществ»

Направляет группы на выполнение практического мини-исследования №4 «Наблюдение влияния температуры на растворимость веществ.».

Составляют схему-модель «Растворение как физико-химический процесс». Каждый учащийся внутри группы самостоятельно читает текст.

1 ученик: рассматривает историю изучения данного вопроса.

2 ученик: выделяет сторонников физической теории растворов

3 ученик: выделяет сторонников химической теории растворов

4 ученик: описывают современные представления, составляют схему-модель РАСТВОР= Н2О + Р.В. + ГИДРАТЫ (продукты взаимодействия Н2О

растворёнными веществами).

5 ученик планирует и оформляет блок 1 ментальной карты.

Учащиеся, соблюдая правила техники безопасности, выполняют мини-исследование №2 «Наблюдение влияния природы растворенного вещества на процесс растворения» по предложенному алгоритму, формулируют вывод.

Формулируют выводы: Природа растворяемого вещества влияет на процесс растворения. Растворимость вещества зависит от природы самого вещества.

Учащиеся, соблюдая правила техники безопасности, выполняют мини-исследование №3 «Наблюдение влияния природы растворителя на процесс растворения веществ» по предложенному алгоритму, формулируют вывод.

Формулируют выводы: Природа растворителя влияет на процесс растворителя. Растворимость вещества зависит от природы самого вещества.

Учащиеся, соблюдая правила техники безопасности, выполняют мини-исследование №4 «Наблюдение влияния температуры на растворимость веществ.».по предложенному алгоритму, формулируют вывод.

Формулируют выводы: С увеличением температуры растворимость вещества увеличивается. Возможно построение модели растворимости в зависимости от температуры.

Проектные задания

«Мозговой штурм»

Алгоритм мини-исследования №2

Приложение 2

Оборудование и реактивы: пронумерованные пробирки с веществами: №1 Хлорид кальция №2 гидроксид кальция №3 карбонат кальция, вода.

Алгоритм мини-исследования №3

Приложение 3

Оборудование и реактивы:

Две пронуме-рованные пробирки №1 и №2 с несколькими кристаллами йода, спирт, вода.

Алгоритм мини-исследования №4

Приложение 4

Созданы промежуточные продукты: схема – модель процесса растворения.

Сформулированы факторы, влияющие на растворимость веществ:

  • природа растворенного вещества
  • природа растворителя
  • температура

Концептуализация и моделирование – создание образа объекта

проектирования.

Организует действия учащихся по созданию образа проектного продукта.

Консультирует учащихся по созданию проектного продукта.

Учащиеся в группах обсуждают, каким будет итоговой модуль, аргументируют свою точку зрения, выслушивают учеников своей группы, участвуют в обсуждении макета. .

Мозговой штурм

Создан образ (модель) проектного продукта – ментальной карты «Растворимость веществ»

Организует работу по распределению блоков внутри группы, организует работу по заполнению табеля учета работы над проектом

Выбирают блок для заполнения, договариваются друг с другом, предлагают взаимопомощь в распределении и оформлении блоков. Оценивают свою собственную работу и работу одноклассников

Табель учета работы над проектом

Распределены все блоки внутри каждой группы, оценена работа за урок.

Д/з: изучить параграф 34, выполнить задания в рабочей тетради. Подобрать иллюстрации для блоков к ментальной карте, иллюстрирующих классификацию и применение растворов.

2-й урок (этап реализации): решение конкретно-практических задач.

Создание проектного продукта.

Разработка критериальной базы

Организует работу по созданию критериев проекта

Предлагают варианты критериев оценки проектного продукта:

  1. Достоверность найденной информации.
  2. Эстетичность оформления
  3. Структурность оформления материала.
  4. Логичность оформления информации.
  5. Наглядность представленной информации.

За каждый критерий от 0 до 3 баллов:

  • 3 балла - критерий полностью представлен
  • 2 балла – не достаточно представлен
  • 1 балл – представлен частично
  • 0 баллов – критерий отсутствует

Оценка «5» - 15-14 баллов

Оценка «4» - 13-11 баллов

Оценка «3»- 10-7 баллов

Оценка «2» -менее 7 баллов

Прием «Дерево мнений»

Разработаны критерии оценки проекта

Решение конкретно-практических задач и создание образовательных продуктов (создание проектного продукта)

Создает условия для реализации проектного продукта.

Организуется выполнение проектного задания, рассматривается требования к составлению ментальной карты, требования к структурированию найденной информации

Каждая группа получает проектное задание и алгоритм его выполнения, Осуществляет консультационную помощь в создании проектного продукта.

Учащиеся в соответствии с распределенными обязанностями определяют образ конкретно-практической задачи.

Это будет ментальная карта, на которой будет структурирована информация по теме «Растворимость веществ. Растворы». В центре будет обозначена тема. Вокруг расположены 4 блока. Информация должна быть представлена в виде схем, рисунков, ассоциаций. Учащиеся распределяют обязанности в группе:

1 ученик: ответственный за блок №1, командир группы

2 ученик: ответственный за блок №2, отслеживание время;

3 ученик: ответственный за блок №3,

4 ученик: ответственный за блок №4

5 ученик: общее оформление работы, ответственный за оценивание выполненной работы.

Выполнение заданий совместно, но под контролем ответственного:

  1. Выделите основное, то что хотите включить в блок.
  2. Предложите разные варианты оформления, выберите самый подходящий.
  3. Визуально оформите информацию в виде логической схемы, дополните рисунками.
  4. Представьте полученный результат работы группы всему классу.При необходимо учащиеся набирают соответствующие понятия на компьютере, распечатывают и размещают на листочках.

Бумага, фломастеры, ножницы, принтер

Выполнены проектные задания.

Создан проектный полупродукт.

Д/з: повторить параграф 34. Доработать созданный проектный полупродукт, подготовить выступление от группы.

3-й урок «Презентация полученного проектного продукта.

Оценка качества продукта и рефлексия действий в проекте его создателей.

Презентация полученного проектного продукта.

Создает условия для презентации проектного продукта

Презентуют созданные проектные продукты - ментальную карту, собранную из 4-х блоков.

Демонстрация карты «Раствори-мость. Растворенные вещества».

Оценка качества проектного продукта и рефлексия действий в проекте его создателей.

Организует обобщение знаний и выполненных действий. Предлагает соотнести задачи и результаты создания проекта, оценить правильность выбора метода проекта.

Обобщает полученные знания, выполненные действия.

Использует критерии для оценки результатов.

Оценивает полученные знания и освоенные действия в соответствии с критериями.

Осуществляет контроль знаний по теме «Растворение. Растворимость веществ».

Группы выходят защищать свой продукт.

Оценивают свою работу в группе по реализации проектной деятельности, работу одноклассников; а также оценивают проекты.

Оспаривают или соглашаются с оценкой своих работ. Анализируют допущенные недочеты.

Вносят предложения в алгоритм выполнения однотипных заданий.

Оценивают проектную деятельность в соответствии с критериями оценочного листа.

Оценочный лист проектной деятельности.

Приложение №5

Оценочный лист проектного продукта

Приложение №6

Задание «Вставь пропущенное слово» по вариантам.

Выставлены оценки. Указаны ошибки.

Проведена рефлексия.

Контроль знаний.

Д/з: выполнить задания учебника с.192. Подготовить сообщения про растворы, используемые в медицине – 1 ряд, в с/х – 2 ряд, в быту – 3 ряд.

Описание промежуточных проектных продуктов и описание используемых урочных домашних заданий (дидактическое обеспечение проектного модуля).

На первом уроке учитель проверяет уровень усвоения ранее изученной темы, предлагает устно выполнить задание на актуализацию знаний - Просмотр в режиме «без звука» флеш - ролика «Признаки химических реакций», Материал Единой коллекции ЦОР

По итогам работы на первом уроке учащиеся получают промежуточные продукты: отчеты по мини-исследованиям№1«Наблюдение процессов растворения перманганата калия, концентрированной серной кислоты и безводного сульфата меди»», №2 Наблюдение влияния природы растворенного вещества на процесс растворения», №3 «Наблюдение влияния природы растворителя на процесс растворения», №4 «Наблюдение влияния температуры на процесс растворения»

На дом учащиеся получают следующее задание: изучить параграф 34, выполнить задание в рабочей тетради часть I тема 34 с помощью интернет - источника подобрать иллюстрации по темам «Значение и применение растворов», «Классификация растворов».

На втором уроке учащиеся разрабатывают проектный продукт в соответствии с проектными заданиями. К концу урока каждая группа оформляет ментальную карту. После второго урока учащиеся получают домашнее задание: доработать проектный полупродукт и подготовить по нему мини-выступление, включая подготовку к проекту и его реализацию.

После третьего урока учащиеся получают домашнее задание: подготовить сообщение про применение растворов в быту, с/х или медицине.

В повседневной жизни люди редко сталкиваются с Большинство предметов представляют собой смеси веществ.

Раствор - это в которой компоненты равномерно смешались. Есть несколько их видов по размеру частиц: грубодисперсные системы, молекулярные растворы и коллоидные системы, которые часто называют золи. В этой статье речь идет о молекулярных (или Растворимость веществ в воде - одно из главных условий, влияющих на образование соединений.

Растворимость веществ: что это и зачем нужно

Чтобы разобраться в этой теме, нужно знать, и растворимость веществ. Простым языком, это способность вещества соединяться с другим и образовывать однородную смесь. Если подходить с научной точки зрения, можно рассмотреть более сложное определение. Растворимость веществ - это их способность образовывать с одним или более веществами гомогенные (или гетерогенные) составы с дисперсным распределением компонентов. Существует несколько классов веществ и соединений:

  • растворимые;
  • малорастворимые;
  • нерастворимые.

О чем говорит мера растворимости вещества

Содержание вещества в насыщенной смеси - это мера его растворимости. Как сказано выше, у всех веществ она разная. Растворимые - это те, которые могут развести более 10 г себя на 100 г воды. Вторая категория - менее 1 г при тех же условиях. Практически нерастворимые - это те, в смесь которых переходит менее 0,01 г компонента. В этом случае вещество не может передавать воде свои молекулы.

Что такое коэффициент растворимости

Коэффициент растворимости (k) - это показатель, максимальной массы вещества (г), которая может развестись в 100 г воды или другого вещества.

Растворители

В данном процессе участвуют растворитель и растворенное вещество. Первый отличается тем, что изначально он пребывает в таком же агрегатном состоянии, что и конечная смесь. Как правило, он взят в большем количестве.

Однако многие знают, что в химии вода занимает особое место. Для нее существуют отдельные правила. Раствор, в котором присутствует H 2 O называется водным. Когда говорится о них, жидкость является экстрагентом и тогда, когда она в меньшем количестве. В пример можно привести 80%-ный раствор азотной кислоты в воде. Пропорции здесь не равны Хоть доля воды меньше, чем кислоты, вещество называть 20%-ным раствором воды в азотной кислоте некорректно.

Существуют смеси, в которых отсутствует H 2 O. Они будут носить имя неводная. Подобные растворы электролита представляют собой ионные проводники. Они содержащие один или смеси экстрагентов. В их состав входят ионы и молекулы. Они используются в таких отраслях, как медицина, производство бытовой химии, косметики и в другие направления. Они могут сочетать в себе несколько нужных веществ с различной растворимостью. Компоненты многих средств, которые применяются наружно, являются гидрофобными. Иными словами, они плохо взаимодействуют с водой. В таких могут быть летучими, нелетучими и комбинированными. Органические вещества в первом случае хорошо растворяют жиры. К летучим относятся спирты, углеводороды, альдегиды и другие. Они часто входят в состав бытовой химии. Нелетучие чаще всего применяются для изготовления мазей. Это жирные масла, жидкий парафин, глицерин и прочие. Комбинированные - это смесь летучих и нелетучих, например, этанол с глицерином, глицерин с димексидом. Также они могут содержать воду.

Виды растворов по степени насыщенности

Насыщенный раствор - это смесь химических веществ, содержащая максимальную концентрацию одного вещества в растворителе при определенной температуре. Дальше оно разводиться не будет. В препарате твёрдого вещества заметно выпадение осадка, который находится в динамическом равновесии с ним. Под этим понятием подразумевается состояние, сохраняющееся во времени вследствие его протекания одновременно в двух противоположных направлениях (прямая и обратная реакции) с одинаковой скоростью.

Если вещество при постоянной температуре все еще может разлагаться, то этот раствор - ненасыщенный. Они устойчивы. Но если в них продолжать добавлять вещество, то оно будет разводиться в воде (или другой жидкости), пока не достигнет максимальной концентрации.

Еще один вид - перенасыщенный. В нем содержится больше растворенного вещества, чем может быть при постоянной температуре. Из-за того, что они находятся в неустойчивом равновесии, при физическом воздействии на них происходит кристаллизация.

Как отличить насыщенный раствор от ненасыщенного?

Это сделать достаточно просто. Если вещество - твердое, то в насыщенном растворе можно увидеть осадок. При этом экстрагент может загустевать, как, например, в насыщенном составе вода, в которую добавили сахар.
Но если изменить условия, повысить температуру, то он перестанет считаться насыщенным, так как при более высокой температуре максимальная концентрация этого вещества будет другой.

Теории взаимодействия компонентов растворов

Существует три теории относительно взаимодействия элементов в смеси: физическая, химическая и современная. Авторы первой - Сванте Август Аррениус и Вильгельм Фридрих Оствальд. Они предположили, что вследствие диффузии частицы растворителя и растворённого вещества равномерно распределились по всему объему смеси, но взаимодействия между ними нет. Химическая теория, которую выдвинул Дмитрий Иванович Менделеев, ей противоположна. Согласно ей, в результате химического взаимодействия между ними формируются неустойчивые соединения постоянного или переменного состава, которые называются сольваты.

В настоящее время используется объединенная теория Владимира Александровича Кистяковского и Ивана Алексеевича Каблукова. Она совмещает физическую и химическую. Современная теория гласит, что в растворе существуют как не взаимодействующие частицы веществ, так и продукты их взаимодействия - сольваты, существование которых доказывал Менделеев. В случае, когда экстрагент - вода, их называют гидратами. Явление, при котором образуются сольваты (гидраты) носит имя сольватация (гидратация). Она воздействует на все физико-химические процессы и меняет свойства молекул в смеси. Сольватация происходит благодаря тому, что сольватная оболочка, состоящая из тесно связанных с ней молекул экстрагента, окружает молекулу растворенного вещества.

Факторы, влияющие на растворимость веществ

Химический состав веществ. Правило "подобное притягивает подобное" распространяется и на реагенты. Схожие по физическим и химическим свойствам вещества могут взаимно растворяться быстрее. Например, неполярные соединения хорошо взаимодействуют с неполярными. Вещества с полярными молекулами или ионным строением разводятся в полярных, например, в воде. В ней разлагаются соли, щёлочи и другие компоненты, а неполярные - наоборот. Можно привести простой пример. Для приготовления насыщенного раствора сахара в воде потребуется большее количество вещества, чем в случае с солью. Как это понимать? Проще говоря, вы можете развести гораздо больше сахара в воде, чем соли.

Температура. Чтобы увеличить растворимость твердых веществ в жидкостях, нужно увеличить температуру экстрагента (работает в большинстве случаев). Можно продемонстрировать такой пример. Если положить щепотку хлорида натрия (соль) в холодную воду, то данный процесс займет много времени. Если проделать то же самое с горячей средой, то растворение будет проходить гораздо быстрее. Это объясняется тем, что вследствие повышения температуры возрастает кинетическая энергия, значительное количество которой часто тратится на разрушение связей между молекулами и ионами твёрдого вещества. Однако, когда повышается температура в случае с солями лития, магния, алюминия и щелочами, их растворимость понижается.

Давление. Этот фактор влияет только на газы. Их растворимость увеличивается при повышении давления. Ведь объём газов сокращается.

Изменение скорости растворения

Не стоит путать этот показатель с растворимостью. Ведь на изменение этих двух показателей влияют разные факторы.

Степень раздробленности растворяемого вещества. Этот фактор влияет на растворимость твердых веществ в жидкостях. В цельном (кусковом) состоянии состав разводится дольше, чем тот, который разбит на мелкие куски. Приведем пример. Цельный кусок соли будет растворяться в воде намного дольше, чем соль в виде песка.

Скорость помешивания. Как известно, этот процесс можно катализировать с помощью помешивания. Его скорость также важна, потому что чем она больше, тем быстрее растворится вещество в жидкости.

Для чего нужно знать растворимость твердых веществ в воде?

Прежде всего, подобные схемы нужны, чтобы правильно решать химические уравнения. В таблице растворимости есть заряды всех веществ. Их необходимо знать для правильной записи реагентов и составления уравнения химической реакции. Растворимость в воде показывает, может ли соль или основание диссоциировать. Водные соединения, которые проводят ток, имеют в своем составе сильные электролиты. Есть и другой тип. Те, которые плохо проводят ток, считаются слабыми электролитами. В первом случае компоненты представляют собой вещества, полностью ионизованные в воде. Тогда как слабые электролиты проявляют этот показатель лишь в небольшой степени.

Уравнения химической реакции

Есть несколько видов уравнений: молекулярный, полный ионный и краткий ионный. По сути последний вариант - сокращённая форма молекулярного. Это окончательный ответ. В полном уравнении записаны реагенты и продукты реакции. Теперь наступает очередь таблицы растворимости веществ. Для начала надо проверить, является ли реакция осуществимой, то есть выполняется ли одно из условий проведения реакции. Их всего 3: образование воды, выделение газа, выпадение осадка. Если два первых условия не соблюдаются, нужно проверить последнее. Для этого нужно посмотреть в таблицу растворимости и выяснить, есть ли в продуктах реакции нерастворимая соль или основание. Если оно есть, то это и будет осадок. Далее таблица потребуется для записи ионного уравнения. Так как все растворимые соли и основания - сильные электролиты, то они будут распадаться на катионы и анионы. Далее сокращаются несвязанные ионы, и уравнение записывается в кратком виде. Пример:

  1. K 2 SO 4 +BaCl 2 =BaSO 4 ↓+2HCl,
  2. 2K+2SO 4 +Ba+2Cl=BaSO 4 ↓+2K+2Cl,
  3. Ba+SO4=BaSO 4 ↓.

Таким образом, таблица растворимости веществ - одно из ключевых условий решения ионных уравнений.

Подробная таблица помогает узнать, сколько компонента нужно взять для приготовления насыщенной смеси.

Таблица растворимости

Так выглядит привычная неполная таблица. Важно, что здесь указывается температура воды, так как она является одним из факторов, о которых мы уже говорили выше.

Как пользоваться таблицей растворимости веществ?

Таблица растворимости веществ в воде - один из главных помощников химика. Она показывает, как различные вещества и соединения взаимодействуют с водой. Растворимость твердых веществ в жидкости - это показатель, без которого многие химические манипуляции невозможны.

Таблица очень проста в использовании. В первой строке написаны катионы (положительно заряженные частицы), во второй - анионы (отрицательно заряженные частицы). Большую часть таблицы занимает сетка с определенными символами в каждой ячейке. Это буквы "Р", "М", "Н" и знаки "-" и "?".

  • "Р" - соединение растворяется;
  • "М" - мало растворяется;
  • "Н" - не растворяется;
  • "-" - соединения не существует;
  • "?" - сведения о существовании соединения отсутствуют.

В этой таблице есть одна пустая ячейка - это вода.

Простой пример

Теперь о том, как работать с таким материалом. Допустим, нужно узнать растворима ли в воде соль - MgSo 4 (сульфат магния). Для этого необходимо найти столбик Mg 2+ и спускаться по нему до строки SO 4 2- . На их пересечении стоит буква Р, значит соединение растворимо.

Заключение

Итак, мы изучили вопрос растворимости веществ в воде и не только. Без сомнений, эти знания пригодятся при дальнейшем изучении химии. Ведь растворимость веществ играет там важную роль. Она пригодится при решении и химических уравнений, и разнообразных задач.

Растворимость - это способность веществ растворяться в воде. Одни вещества очень хорошо растворяются в воде, некоторые даже в неограниченных количествах. Другие - лишь в небольших количествах, а третьи - вообще почти не растворяются. Поэтому вещества делят на растворимые, малорастворимые и практически нерастворимые.

К растворимым относятся такие вещества, которые в 100 г воды растворяются в количестве больше 1 г (NaCl, сахар, HCl, KNO 3). Малорастворимые вещества растворяются в количестве от 0,01 г до 1 г в 100 г воды (Ca(OH) 2 , CaSO 4). Практически нерастворимые вещества не могут раствориться в 100 г воды в количестве больше 0,01 г (металлы, CaCO 3 , BaSO 4).

При протекании химических реакций в водных растворах могут образовываться нерастворимые вещества, которые выпадают в осадок или находятся во взвешенном состоянии, делая раствор мутным.

Существует таблица растворимости в воде кислот, оснований и солей, где отражено является ли соединение растворимым. Все соли калия и натрия, а также все нитраты (соли азотной кислоты) хорошо растворимы в воде. Из сульфатов (солей серной кислоты) малорастворим сульфат кальция, нерастворимы сульфаты бария и свинца. Хлорид свинца малорастворим, а хлорид серебра нерастворим.

Если в клетках таблицы растворимости стоит черточка, это значит, что соединение реагирует с водой, в результате чего образуются другие вещества, т. е. соединение в воде не существует (например, карбонат алюминия).

Все твердые вещества, даже хорошо растворимые в воде, растворяются лишь в определенных количествах. Растворимость веществ выражают числом, которое показывает наибольшую массу вещества, которая может раствориться в 100 г воды при определенных условиях (обычно имеется в виду температура). Так при 20 °C в воде растворяется 36 г поваренной соли (хлорида натрия NaCl), более 200 г сахара.

С другой стороны, вообще нерастворимых веществ нет. Любое практически нерастворимое вещество хотя бы в очень незначительных количествах, но растворяется в воде. Например, мел растворяется в 100 г воды при комнатной температуре в количестве 0,007 г.

Большинство веществ с повышением температуры лучше растворяются в воде. Однако NaCl почти одинаково растворим при любой температуре, а Ca(OH)2 (известь) лучше растворяется при более низкой температуре. На основе зависимости растворимости веществ от температуры строят кривые растворимости.

Если в растворе при данной температуре еще можно растворить какое-то количество вещества, то такой раствор называют ненасыщенным. Если же достигнут придел растворимости, и больше вещества растворить нельзя, то говорят, что раствор насыщенный.

Когда охлаждают насыщенный раствор, то растворимость вещества понижается, и, следовательно, оно начинает выпадать в осадок. Часто вещество выделяется в виде кристаллов. Для разных солей кристаллы имеют свою форму. Так кристаллы поваренной соли имеют кубическую форму, у калийной селитры они похожи на иголки.