Преобразователь напряжения dc схема. Повышающий преобразователь напряжения DC DC

Устройствами с батарейным питанием сейчас уже никого не удивишь, всевозможных игрушек и гаджетов питающихся от аккумулятора или батарейки найдется с десяток в каждом доме. Между тем, мало кто задумывался над количеством разнообразных преобразователей, которые используются для получения необходимых напряжений или токов от стандартных батарей. Эти самые преобразователи делятся на несколько десятков различных групп, каждая со своими особенностями, однако в данный момент времени мы говорим про понижающие и повышающие преобразователи напряжения, которые чаще всего называются AC/DC и DC/DC преобразователями. В большинстве случаев для построения таких конвертеров используются специализированные микросхемы, позволяющие с минимальным количеством обвязки построить преобразователь определенной топологии, благо микросхем питания на рынке сейчас великое множество.

Рассматривать особенности применения данных микросхем можно бесконечно долго, особенно с учетом целой библиотеки даташитов и аппноутов от производителей, а также бесчисленного числа условно-рекламных обзоров от представителей конкурирующих фирм, каждая из которых старается представить свой продукт наиболее качественным и универсальным. В этот раз мы будем использовать дискретные элементы, на которых соберем несколько простейших повышающих DC/DC преобразователей, служащих для того, чтобы запитать небольшое маломощное устройство, к примеру, светодиод, от 1 батарейки с напряжением 1,5 вольт. Данные преобразователи напряжения можно смело считать проектом выходного дня и рекомендовать для сборки тем, кто делает свои первые шаги в удивительный мир электроники.

На данной схеме представлен релаксационный автогенератор, представляющий собой блокинг-генератор со встречным включением обмоток трансформатора. Принцип работы данного преобразователя следующий: при включении, ток протекающий через одну из обмоток трансформатора и эмиттерный переход транзистора - открывает его, в результате чего он открывается и больший ток начинает течь через вторую обмотку трансформатора и открытый транзистор. В результате в обмотке, подключенной к базе транзистора наводится ЭДС, запирающая транзистор и ток через него обрывается. В этот момент энергия, запасенная в магнитном поле трансформатора, в результате явления самоиндукции, высвобождается и через светодиод начинает протекать ток, заставляющий его светиться. Затем процесс повторяется.

Компоненты, из которых можно собрать этот простой повышающий преобразователь напряжения, могут быть совершенно различными. Схема, собранная без ошибок, с огромной долей вероятности будет корректно работать. Мы пробовали использовать даже транзистор МП37Б - преобразователь отлично функционирует! Самым сложным является изготовление трансформатора - его надо намотать сдвоенным проводом на ферритовом колечке, при этом количество витков не играет особой роли и находится в диапазоне от 15 до 30. Меньше - не всегда работает, больше - не имеет смысла. Феррит - любой, брать N87 от Epcos не имеет особого смысла, также как и разыскивать M6000НН отечественного производства. Токи в цепи протекают мизерные, поэтому размер колечка может быть очень небольшим, внешнего диаметра в 10 мм будет более чем достаточно. Резистор сопротивлением около 1 килоома (никакой разницы между резисторами номиналом в 750 Ом и 1,5 КОм обнаружено не было). Транзистор желательно выбрать с минимальным напряжением насыщения, чем оно меньше - тем более разряженную батарейку можно использовать. Экспериментально были проверены: МП 37Б, BC337, 2N3904, MPSH10. Светодиод - любой имеющийся, с оговоркой, что мощный многокристальный будет светиться не в полную силу.

Собранное устройство выглядит следующим образом:

Размер платы 15 х 30 мм, и может быть уменьшен до менее чем 1 квадратного сантиметра при использовании SMD-компонентов и достаточно маленького трансформатора. Без нагрузки данная схема не работает.

Вторая схема - это типовой степ-ап преобразователь, выполненный на двух транзисторах. Плюсом данной схемы является то, что при её изготовлении не надо мотать трансформатор, а достаточно взять готовый дроссель , но она содержит больше деталей, чем предыдущая.

Принцип работы сводится к тому, что ток через дроссель периодически прерывается транзистором VT2, а энергия самоиндукции направляется через диод в конденсатор C1 и отдается в нагрузку. Опять же, схема работоспособна с совершенно различными компонентами и номиналами элементов. Транзистор VT1 может быть BC556 или BC327, а VT2 BC546 или BC337, диод VD1 - любой диод Шоттки, например, 1N5818. Конденсатор C1 - любого типа, емкостью от 1 до 33 мкФ, больше не имеет смысла, тем более, что можно и вовсе обойтись без него. Резисторы - мощностью 0,125 или 0,25 Вт (хотя можно поставить и мощные проволочные, ватт эдак на 10, но это скорее расточительство чем необходимость) следующих номиналов: R1 - 750 Ом, R2 - 220 КОм, R3 - 100 КОм. При этом, все номиналы резисторов могут быть совершенно свободно заменены на имеющие в наличии в пределах 10-15% от указанных, на работоспособности правильно собранной схемы это не сказывается, однако влияет на минимальное напряжение, при котором может работать наш преобразователь.

Самая важная деталь - дроссель L1, его номинал также может отличаться от 100 до 470 мкГн (экспериментально проверены номиналы до 1 мГн - схема работает стабильно), а ток на который он должен быть рассчитан не превышает 100 мА. Светодиод - любой, опять же с учетом того, что выходная мощность схемы весьма невелика.Правильно собранное устройство сразу же начинает работать и не нуждается в настройке.

Напряжение на выходе можно стабилизировать, установив стабилитрон необходимого номинала параллельно конденсатору C1, однако следует помнить, что при подключении потребителя напряжение может проседать и становиться недостаточным. ВНИМАНИЕ! Без нагрузки данная схема может вырабатывать напряжение в десятки или даже сотни вольт! В случае использования без стабилизируещего элемента на выходе, конденсатор C1 окажется заряжен до максимального напряжения, что в случае последующего подключения нагрузки может привести к её выходу из строя!

Преобразователь также выполнен на плате размером 30 х 15 мм, что позволяет прикрепить его на батарейный отсек типа размера AA. Разводка печатной платы выглядит следующим образом:

Обе простые схемы повышающих преобразователей можно сделать своими руками и с успехом применять в походных условиях, например в фонаре или светильнике для освещения палатки, а также в различных электронных самоделках, для которых критично использование минимального количества элементов питания.

Входные напряжения до 61 В, выходные напряжения от 0.6 В, выходные токи до 4 А, возможность внешней синхронизации и настройки частоты, а также подстройки тока ограничения, подстройка времени плавного запуска, комплексные защиты нагрузки, широкий рабочий диапазон температур – все эти особенности современных источников питания достижимы при помощи новой линейки DC/DC-преобразователей производства .

В настоящий момент номенклатура микросхем импульсных регуляторов производства компании STMicro (рисунок 1) позволяет создавать источники питания (ИП) со входными напряжениями до 61 В и выходными токами до 4 А.

Задача преобразования напряжения не всегда проста. Каждое конкретное устройство предъявляет свои требования к регулятору напряжения. Иногда главную роль играет цена (потребительская электроника), габариты (портативная электроника), эффективность (устройства с батарейным питанием) или даже скорость разработки изделия. Эти требования зачастую противоречат друг другу. По этой причине не существует идеального и универсального преобразователя напряжения.

В настоящее время применяется несколько типов преобразователей: линейные (стабилизаторы напряжения), импульсные DC/DC-преобразователи, схемы с переносом заряда и даже источники питания на гальванических изоляторах.

Однако наиболее распространенными остаются линейные регуляторы напряжения и понижающие импульсные DC/DC-преобразователи. Основное отличие функционирования этих схем видно из названия. В первом случае силовой ключ работает в линейном режиме, во втором – в ключевом. Основные достоинства, недостатки и области применения этих схем приведены ниже.

Особенности работы линейного регулятора напряжения

Принцип работы линейного регулятора напряжения хорошо известен. Классический интегральный стабилизатор μA723 был разработан еще в 1967 году Р. Видларом. Несмотря на то, что электроника с тех пор ушла далеко вперед, принципы функционирования остались практически неизменными .

Стандартная схема линейного регулятора напряжения состоит из ряда основных элементов (рисунок 2): силового транзистора VT1, источника опорного напряжения (ИОН), схемы компенсационной обратной связи на операционном усилителе (ОУ). Современные регуляторы могут содержать дополнительные функциональные блоки: схемы защиты (от перегрева, от перегрузки по току), схемы управления питанием и др.

Принцип работы таких стабилизаторов достаточно прост. Схема обратной связи на ОУ сравнивает величину опорного напряжения с напряжением выходного делителя R1/R2. На выходе ОУ формируется рассогласование, определяющее напряжение «затвор-исток» силового транзистора VT1. Транзистор работает в линейном режиме: чем больше напряжение на выходе ОУ, тем меньше напряжение «затвор-исток», и тем больше сопротивление VT1.

Такая схема позволяет компенсировать все изменения входного напряжения. Действительно, предположим, что входное напряжение Uвх увеличилось. Это вызовет следующую цепочку изменений: Uвх увеличилось → Uвых увеличится → напряжение на делителе R1/R2 возрастет → выходное напряжение ОУ увеличится → напряжение «затвор-исток» уменьшится → сопротивление VT1 увеличится → Uвых уменьшится.

В результате при изменении входного напряжения выходное напряжение меняется незначительно.

При уменьшении выходного напряжения происходят обратные изменения значений напряжений.

Особенности работы понижающего DC/DC-преобразователя

Упрощенная схема классического понижающего DC/DC-преобразователя (преобразователь I типа, buck-converter, step-down converter) состоит из нескольких основных элементов (рисунок 3): силового транзистора VT1, схемы управления (СУ), фильтра (Lф-Cф), обратного диода VD1 .

В отличие от схемы линейного регулятора транзистор VT1 работает в ключевом режиме.

Цикл работы схемы состоит из двух фаз: фазы накачки и фазы разряда (рисунки 4…5).

В фазе накачки транзистор VT1 открыт и через него протекает ток (рисунок 4). Происходит запасание энергии в катушке Lф и конденсаторе Сф.

В фазе разряда транзистор закрыт, ток через него не протекает. Катушка Lф выступает в качестве источника тока. VD1 – диод, который необходим для протекания обратного тока.

В обеих фазах к нагрузке прикладывается напряжение, равное напряжению на конденсаторе Сф.

Приведенная схема обеспечивает регулирование выходного напряжения при изменении длительности импульса:

Uвых = Uвх × (tи/T)

Если величина индуктивности мала, ток разряда через индуктивность успевает достичь нуля. Такой режим называют режимом прерывистых токов. Он характеризуется увеличением пульсаций тока и напряжения на конденсаторе, что приводит к ухудшению качества выходного напряжения и росту шумов схемы. По этой причине режим прерывистых токов используется редко.

Существует разновидность схемы преобразователя, в которой «неэффективный» диод VD1 заменен на транзистор. Этот транзистор открывается в противофазе с основным транзистором VT1. Такой преобразователь называется синхронным и имеет больший КПД.

Достоинства и недостатки схем преобразования напряжений

Если бы одна из приведенных схем обладала абсолютным превосходством, то вторую бы благополучно забыли. Однако этого не происходит. Это значит, что обе схемы имеют преимущества и недостатки. Анализ схем стоит проводить по широкому кругу критериев (таблица 1).

Таблица 1. Преимущества и недостатки схем регуляторов напряжения

Характеристика Линейный регулятор Понижающий DC/DC-преобразователь
Типовой диапазон входных напряжений, В до 30 до 100
Типовой диапазон выходных токов сотни мА единицы А
КПД низкий высокий
Точность установки выходного напряжения единицы % единицы %
Стабильность выходного напряжения высокая средняя
Генерируемый шум низкий высокий
Сложность схемной реализации низкая высокая
Сложность топологии ПП низкая высокая
Стоимость низкая высокая

Электрические характеристики. Для любого преобразователя основными характеристиками являются КПД, ток нагрузки, диапазон входного и выходного напряжений.

Значение КПД для линейных регуляторов невелико и обратно пропорционально входному напряжению (рисунок 6). Это связано с тем, что все «лишнее» напряжение падает на транзисторе, работающем в линейном режиме. Мощность транзистора выделяется в виде тепла. Низкий КПД приводит к тому, что диапазон входных напряжений и выходных токов линейного регулятора относительно невелики: до 30 В и до 1 А.

КПД импульсного регулятора значительно выше и меньше зависит от входного напряжения. При этом не редкостью являются входные напряжения более 60 В и нагрузочные токи более 1 А.

Если используется схема синхронного преобразователя, в котором неэффективный обратный диод заменен транзистором, то КПД будет еще выше.

Точность и стабильность выходного напряжения. Линейные стабилизаторы могут иметь чрезвычайно высокую точность и стабильность параметров (доли процента). Зависимость выходного напряжения от изменения входного и от тока нагрузки не превышает единиц процентов.

Импульсный регулятор по принципу функционирования изначально имеет те же источники погрешности, что и линейный регулятор. Кроме того, на отклонение выходного напряжения может существенно сказываться величина протекающего тока.

Шумовые характеристики. Линейный регулятор обладает умеренной шумовой характеристикой. Существуют низкошумящие прецизионные регуляторы, используемые в высокоточной измерительной технике.

Импульсный стабилизатор сам по себе является мощным источником помех, так как силовой транзистор работает в ключевом режиме. Генерируемые помехи делятся на кондуктивные (передающиеся по линиям питания) и индуктивные (передаются через непроводящие среды).

От кондуктивных помех избавляются при помощи фильтров нижних частот. Чем выше рабочая частота преобразователя, тем проще избавиться от помех. В измерительных схемах импульсный регулятор часто используют совместно с линейным стабилизатором. В этом случае уровень помех значительно сокращается.

Избавиться от вредного воздействия индуктивных помех гораздо сложнее. Эти помехи возникают в катушке индуктивности и передаются по воздуху и непроводящим средам. Для их устранения используют экранированные индуктивности, катушки на тороидальном сердечнике. При разводке платы применяют сплошную заливку полигоном земли и/или даже выделяют отдельный слой земли в многослойных платах. Кроме того, сам импульсный преобразователь максимально удаляется от измерительных схем.

Эксплуатационные характеристики. С точки зрения простоты схемной реализации и разводки печатной платы линейные регуляторы предельно просты. Кроме самого интегрального стабилизатора требуется всего пара конденсаторов.

Импульсный преобразователь потребует как минимум внешнего L-C-фильтра. В ряде случаев требуется внешний силовой транзистор и внешний обратный диод. Это приводит к необходимости расчетов и моделирования, а топология печатной платы существенно усложняется. Дополнительное усложнение платы происходит из-за требования к ЭМС.

Стоимость. Очевидно, что в силу большого количества внешних компонентов импульсный преобразователь будет иметь большую стоимость.

В качестве вывода можно определить преимущественные области применения обоих типов преобразователей:

  • линейные регуляторы могут применяться в маломощных низковольтных схемах с высокими точностью, стабильностью и требованиями к малым уровням шумов. Примером могут быть измерительные и прецизионные схемы. Кроме того, малые габариты и низкая стоимость итогового решения могут идеально подойти для портативной электроники и бюджетных устройств.
  • импульсные регуляторы идеально подойдут для мощных низко- и высоковольтных схем в автомобильной, промышленной и бытовой электронике. Высокий КПД зачастую делает использование DC/DC безальтернативным для портативных устройств и устройств с батарейным питанием.

Иногда возникает необходимость использовать линейные регуляторы при высоких входных напряжениях. В таких случаях можно воспользоваться стабилизаторами производства компании STMicroelectronics, обладающими рабочими напряжениями более 18 В. (таблица 2).

Таблица 2. Линейные регуляторы STMicroelectronics с высоким входным напряжением

Наименование Описание Uвх макс, В Uвых ном, В Iвых ном, А Собственное
падение, В
35 5, 6, 8, 9, 10, 12, 15 0.5 2
Прецизионный регулятор на 500 мА 40 24 0.5 2
регулятор на 2 А 35 0.225 2 2
, Подстраиваемый регулятор 40 0.1; 0.5; 1.5 2
регулятор на 3 А 20 3 2
Прецизионный регулятор на 150 мА 40 0.15 3
KFxx 20 2.5: 8 0.5 0.4
Регулятор со сверхнизким собственным падением 20 2.7: 12 0.25 0.4
Регулятор на 5 А с низким собственным падением и подстройкой выходного напряжения 30 1.5; 3; 5 1.3
LExx Регулятор со сверхнизким собственным падением 20 3; 3.3; 4.5; 5; 8 0.1 0.2
Регулятор со сверхнизким собственным падением 20 3.3; 5 0.1 0.2
Регулятор со сверхнизким собственным падением 40 3.3; 5 0.1 0.25
регулятор на 85 мА с низким собственным падением 24 2.5: 3.3 0.085 0.5
Прецизионный регулятор отрицательного напряжения -35 -5; -8; -12; -15 1.5 1.1; 1.4
Регулятор отрицательного напряжения -35 -5; -8; -12; -15 0.1 1.7
Подстраиваемый регулятор отрицательного напряжения -40 1.5 2

Если принято решение о построении импульсного ИП, то следует выбрать подходящую микросхему преобразователя. Выбор осуществляется с учетом ряда основных параметров.

Основные характеристики понижающих импульсных DC/DC-преобразователей

Перечислим основные параметры импульсных преобразователей.

Диапазон входных напряжений (В). К сожалению, всегда есть ограничение не только на максимальное, но и на минимальное входное напряжение. Значение этих параметров всегда выбирается с некоторым запасом.

Диапазон выходных напряжений (В). В силу ограничения на минимальную и максимальную длительность импульса, диапазон значений выходного напряжения ограничен.

Максимальный выходной ток (А). Данный параметр ограничивается целым рядом факторов: максимальной допустимой рассеиваемой мощностью, конечным значением сопротивления силовых ключей и др.

Частота работы преобразователя (кГц). Чем выше частота преобразования, тем проще произвести фильтрацию выходного напряжения. Это позволяет бороться с помехами и снижать значения номиналов элементов внешнего L-C-фильтра, что приводит к увеличению выходных токов и к уменьшению габаритов. Однако рост частоты преобразования увеличивает потери на переключение силовых ключей и увеличивает индуктивную составляющую помех, что явно нежелательно.

КПД (%) является интегральным показателем эффективности и приводится в виде графиков для различных значений напряжений и токов.

Остальные параметры (сопротивление каналов интегральных силовых ключей (мОм), собственный ток потребления (мкА), тепловое сопротивление корпуса и др.) являются менее важными, но их также следует учитывать.

Новые преобразователи производства компании STMicroelectronics имеют высокие входное напряжение и КПД, и их параметры могут быть рассчитаны при помощи бесплатной программы eDesignSuite.

Линейка импульсных DC/DC от ST Microelectronics

Портфолио DC/DC STMicro­electro­nics постоянно расширяется. Новые микросхемы преобразователей имеют расширенный диапазон входных напряжений до 61 В ( / ), высокие выходные токи, выходные напряжения от 0.6 В ( / / ) (таблица 3).

Таблица 3. Новые DC/DC STMicroelectronics

Характеристики Наименование
L7987; L7987L
Корпус VFQFPN-10L HSOP-8; VFQFPN-8L; SO8 HSOP-8; VFQFPN-8L; SO8 HTSSOP16 VFQFPN-10L; HSOP 8 VFQFPN-10L; HSOP 8 HSOP 8 HTSSOP 16
Входное напряжение Uвх, В 4.0…18 4.0…18 4.0…18 4…38 4.5…38 4.5…38 4.5…38 4.5…61
Выходной ток, А 4 3 4 2 2 3 3 2 (L7987L); 3 (L7987)
Диапазон выходных напряжений, В 0.8…0.88×Uвх 0.8…Uвх 0.8…Uвх 0.85…Uвх 0.6…Uвх 0.6…Uвх 0.6…Uвх 0.8…Uвх
Рабочая частота, кГц 500 850 850 250…2000 250…1000 250…1000 250…1000 250…1500
Внешняя синхронизация частоты (макс), кГц нет нет нет 2000 1000 1000 1000 1500
Функции Плавный старт; защита от перегрузки по току; защита от перегрева
Дополнительные функции ENABLE; PGOOD ENABLE LNM; LCM; INHIBIT; защита от перегрузки по напряжению ENABLE PGOOD; защита от провалов напряжения; подстройка тока отсечки
Диапазон рабочих температур кристалла, °C -40…150

Все новые микросхемы импульсных преобразователей имеют функции плавного старта, защиты от перегрузки по току и перегрева.

Мощный и довольно хороший повышающий преобразователь напряжения можно построить на основе простого мультивибратора.
В моем случае этот инвертор был построен просто для обзора работы, был сделан также небольшой ролик с работой данного инвертора.

О схеме в целом — простой двухтактный инвертор, проще трудно представить. Задающим генератором и одновременно силовой частью являются мощные полевые транзисторы (желательно использовать ключи типа IRFP260, IRFP460 и аналогичные) подключенные по схеме мультивибратора. В качестве трансформатора можно использовать готовый транс от компьютерного блока питания (самый большой трансформатор).

Для наших целей нужно задействовать обмотки 12 Вольт и среднюю точку (коса, отвод). На выходе трансформатора напряжение может доходить до 260 Вольт. Поскольку выходное напряжение является переменным, то нужно выпрямить диодным мостом. Мост желательно собрать из 4-х отдельных диодов, готовые диодные мосты предназначенны для сетевых частот 50Гц, а в нашей схеме выходная частота в районе 50кГц.

Обязательно использовать импульсные, быстрые или ультрабыстрые диоды с обратным напряжением не ниже 400 Вольт и с допустимым током 1 Ампер и Выше. Можно задействовать диоды MUR460, UF5408,HER307, HER207, UF4007, и другие.
Те же самые диоды рекомендую использовать и в схеме задающей цепи.

Схема инвертора работает на основе параллельного резонанса, следовательно, частота работы будет зависеть от нашего колебательного контура — в лице первичной обмотки трансформатора и конденсатору параллельно этой обмотке.
На счет мощности и работы в целом. Правильно собранная схема в дополнительной наладке не нуждается и работает сразу. В ходе работы ключи не должны вообще греться, если выход трансформатора не нагружен. Холостой ток инвертора может доходить до 300мА — это норма, выше уже проблема.

С хорошими ключами и трансформатором с этой схемы без особых проблем можно снять мощность в районе 300 Ватт, в некоторых случаях даже 500 ватт. Номинал входных напряжений довольно шиток, схема будет работать от источника 6 Вольт до 32 -х Вольт, больше подавать не рискнул.

Дросселя — мотаются проводом 1,2мм на желто-белых кольцах от дросселя групповой стабилизации в компьютерном блоке питания. Количество витков каждого дросселя -7, оба дросселя полностью одинаковы.

Конденсаторы параллельно первичной обмотке может чуть нагреться в ходе работы, поэтому советую использовать высоковольтные конденсаторы с рабочим напряжением 400 Вольт и выше.

Схема проста и полностью работоспособна, но не смотря на простоту и доступность конструкции — это не идеальный вариант. Причина — не самое лучшее управление полевыми ключами. Схема лишена специализированного генератора и управляющей цепи, что делает ее не совсем надежный, если схема предназначена для длительной работы под нагрузкой. Схема может питать ЛДС и устройства, которые имеют встроенные ИИП.

Важное звено — трансформатор, должен быть хорошо намотан и правильно сфазирован, ибо он играет основную роль в надежной работе инвертора.

Первичная обмотка 2х5 витков шиной из 5 -и проводов 0,8 мм. Вторичная обмотка намотана проводом 0,8 мм и содержит 50 витков — это в случае самостоятельной намотки трансформатора.

Компания STMicroelectronics выпускает микросхемы для создания неизолированных DC/DC-преобразователей с высокими качественными показателями, требующие небольшого количества внешних компонентов.

Постоянное развитие ИС для DC/DC-преобразователей характеризуется следующими факторами:

  • повышением рабочих частот преобразования (максимальная частота преобразования для микросхем STMicroelectronics составляет 1,7МГц), что позволяет резко уменьшить размеры внешних компонентов и минимизировать площадь печатной платы;
  • уменьшением размеров корпусов микросхем благодаря высоким частотам преобразования (корпус DFN6D имеет размеры всего 3х3мм);
  • повышением удельной плотности выходного тока (корпус DFN6D обеспечивает выходной ток до 2,0А; корпуса DFN8 и PowerSO-8 могут работать при токах до 3,0А);
  • повышением КПД и снижением потребляемой мощности при отключенном состоянии, что особенно важно для приборов с автономным питанием.

Компания STM разделяет свои микросхемы для неизолированных DC/DC-преобразователей на две группы. Первая группа имеет рабочую частоту до 1 МГц (параметры сведены в таблицу 1), вторая группа — с частотой преобразования 1,5 и 1,7 МГц (параметры см. в таблице 2). Во вторую группу добавлены также и микросхемы серии ST1S10 с номинальной частотой преобразования 0,9 МГц (максимальная частота преобразования для этих микросхем может достигать 1,2 МГц). Микросхемы серии ST1S10 могут работать при синхронизации от внешнего генератора в диапазоне частот от 400 кГц до 1,2 МГц.

Таблица 1. Микросхемы STMicroelectronics для DC/DC-преобразователей с частотой преобразования до 1 МГц

Наименование Топология Vвх., В Vвых., В Iвых., А Частота
преобразования, МГц
Вход
отключения
Корпус
L296 Step-down 9…46 5,1…40 4 до 200 Есть MULTIWATT-15
L4960 Step-down 9…46 5,1…40 2,5 до 200 Нет HEPTAWATT-7
L4962 Step-down 9…46 5,1…40 1,5 до 200 Есть HEPTAWATT-8, DIP-16
L4963 Step-down 9…46 5,1…40 1,5 42…83 Нет DIP-18, SO-20
L4970A Step-down 12…50 5,1…50 10 до 500 Нет MULTIWATT-15
L4971 Step-down 8…55 3,3…50 1,5 до 300 Есть DIP-8, SO-16W
L4972A Step-down 12…50 5,1…40 2 до 200 Нет DIP-20, SO-20
L4973D3.3 Step-down 8…55 0,5…50 3,5 до 300 Есть DIP-8, SO-16W
L4973D5.1 Step-down 8…55 5,1…50 3,5 до 300 Есть DIP-8, SO-16W
L4974A Step-down 12…50 5,1…40 3,5 до 200 Нет MULTIWATT-15
L4975A Step-down 12…50 5,1…40 5 до 500 Нет MULTIWATT-15
L4976 Step-down 8…55 0,5…50 1 до 300 Есть DIP-8, SO-16W
L4977A Step-down 12…50 5,1…40 7 до 500 Нет MULTIWATT-15
L4978 Step-down 8…55 3,3…50 2 до 300 Есть DIP-8, SO-16W
L5970AD Step-down 4,4…36 0,5…35 1 500 Есть SO-8
L5970D Step-down 4,4…36 0,5…35 1 250 Есть SO-8
L5972D Step-down 4,4…36 1,23…35 1,5 250 Нет SO-8
L5973AD Step-down 4,4…36 0,5…35 1,5 500 Есть HSOP-8
L5973D Step-down 4,4…36 0,5…35 2 250 Есть HSOP-8
L5987A Step-down 2,9…18 0,6…Vвх. 3 250…1000 Есть HSOP-8
L6902D Step-down 8…36 0,5…34 1 250 Нет SO-8
L6920D Step-up 0,6…5,5 2…5,2 1 до 1000 Есть TSSOP-8
L6920DB Step-up 0,6…5,5 1,8…5,2 0,8 до 1000 Есть miniSO-8

Таблица 2. Микросхемы для понижающих DC/DC-преобразователей с частотой преобразования от 0,9 до 1,7 МГц

Серия Наименование Iвых., А Vвх.,В Vвых., В Частота
преобразования, МГц
Вход
отключения
Корпус
ST1S03 ST1S03PUR 1,5 3…16 0,8…12 1,5 Нет DFN6D (3х3 мм)
ST1S03A ST1S03AIPUR 3…5.5 0,8…5.5 1,5 Есть DFN6D (3х3 мм)
ST1S03APUR 1,5 Нет
ST1S06 ST1S06PUR 2,7…6 0,8…5.5 1,5 Есть DFN6D (3х3 мм)
ST1S06A ST1S06APUR 1,5 Нет
ST1S06xx12 ST1S06PU12R 2,7…6 1,2 1,5 Есть DFN6D (3×3 мм)
ST1S06xx33 ST1S06PU33R 3,3 1,5 Есть
ST1S09 ST1S09IPUR 2,0 2,7…5,5 0,8…5 1,5 Есть DFN6D (3х3 мм)
ST1S09PUR 1,5 Нет
ST1S10 ST1S10PHR 3,0 2,5…18 0,8…0,85Vвх. 0,9 (0,4…1,2)* Есть PowerSO-8
ST1S10PUR DFN8 (4×4 мм)
ST1S12xx ST1S12GR 0,7 2,5…5,5 1,2…5 1,7 Есть TSOT23-5L
ST1S12xx12 ST1S12G12R 1,2
ST1S12xx18 ST1S12G18R 1,8
* - в скобках указан диапазон частот преобразования при синхронизации от внешнего генератора.

Основная часть микросхем для DC/DC-преобразователей из таблицы 1 имеет частоту преобразования до 300 кГц. На таких частотах облегчается выбор индуктивностей на выходе DC/DC, т. к. для рабочих частот микросхем из таблицы 2 (1,5 и 1,7 МГц) на частотные характеристики индуктивностей необходимо обращать особое внимание. На рисунках 1 и 2 в качестве примеров приведены рекомендуемые производителем схемы включения микросхем L5973D (выходной ток до 2,0 А при частоте преобразования 250 кГц) и ST1S06 (выходной ток до 1,5 А при частоте преобразования 1,5 МГц).

Рис. 1.


Рис. 2.

Из рисунков 1 и 2 видно, что микросхемы с относительно низкими частотами преобразования по современным меркам требуют большего количества внешних электронных компонентов, имеющих увеличенные размеры по сравнению с компонентами преобразователей, работающих на частотах более 1 МГц. Микросхемы для DC/DC из таблицы 2 обеспечивают гораздо меньшие размеры печатной платы, но необходимо более внимательно относиться к разводке проводников для уменьшения излучаемых электромагнитных помех.

Некоторые микросхемы позволяют управлять включением и выключением конвертеров благодаря наличию входа INHIBIT. Пример включения таких микросхем приведен на рис. 3. ST1S09 (без входа INHIBIT) и ST1S09I (с входом INHIBIT). В нижней части этого рисунка приведены рекомендуемые значения номиналов резисторов R1 и R2 для формирования выходных напряжений 1,2 и 3,3 В.

Рис. 3.

При наличии на входе управления VINH высокого уровня напряжения (более 1,3 В) микросхема ST1S09I находится в активном состоянии; при напряжении на этом входе менее 1,4 В DC/DC-преобразователь отключается (собственное потребление при этом составляет менее 1 мкА). Вариант микросхемы без входа управления на выводе 6 вместо входа VINH имеет выход «PG = Power Good» (питание в норме). Формирование сигнала «Power Good» проиллюстрировано на рис. 4. Когда на входе «FB» (FeedBack или вход обратной связи) достигается значение 0,92хVFB, происходит переключение компаратора, и на выходе PG формируется высокий уровень напряжения, информирующий о том, что выходное напряжение находится в допустимых пределах.


Рис. 4.

Эффективность преобразования
на примере микросхем ST1S09 и ST1S09I

Эффективность понижающего DC/DC-преобразователя сильно зависит от параметров интегрированных в микросхемы транзисторов с изолированным затвором (MOSFET), выполняющих роль ключа. Одна из проблем высокочастотных преобразователей связана с током заряда затвора транзистора при управлении им с помощью ШИМ-контроллера. Потери в этом случае практически не зависят от тока в нагрузке. Вторая проблема, снижающая КПД, — рассеиваемая в транзисторе мощность во время переключения из одного состояния в другое (в эти промежутки времени транзистор работает в линейном режиме). Уменьшить потери можно, обеспечив более крутые фронты переключения, но это повышает электромагнитные шумы и помехи по цепям питания. Еще одна причина снижения КПД преобразователя — наличие активного сопротивления «сток — исток» (Rdson). В правильно спроектированной схеме КПД достигает максимального значения при равенстве статических (омических) и динамических потерь. Следует учесть, что выходной выпрямительный диод также вносит свою долю динамических и статических потерь. Некорректно выбранная индуктивность на выходе DC/DC-преобразователя может дополнительно существенно снизить эффективность преобразования, что заставляет помнить и об ее высокочастотных свойствах. В самом плохом случае на высоких частотах преобразования выходной дроссель может потерять свои индуктивные свойства, и преобразователь просто не будет работать.

Компания STMicroelectronics уже много лет выпускает мощные полевые транзисторы и диоды с очень высокими динамическими и статическими характеристиками. Обладание отлаженной технологией производства транзисторов MOSFET позволяет компании интегрировать свои полевые транзисторы в микросхемы для DC/DC-преобразователей и достигать высоких значений КПД преобразования.

На рис. 5 (а, б, в) в качестве примера приведены типовые зависимости эффективности преобразования от некоторых параметров при разных условиях работы. Графики зависимости КПД от величины выходного тока достигают максимальных значений около 95% при токе 0,5 А. Далее спад этих характеристик довольно пологий, что характеризует лишь небольшое увеличение потерь при росте выходного тока до максимального значения.


Рис. 5а.

На рис. 5б показаны зависимости КПД от уровня выходного напряжения DC/DC-преобразователей на микросхемах ST1S09 и ST1S09I. С ростом выходного напряжения КПД возрастает. Это объясняется тем, что падение напряжения на транзисторах выходного каскада практически не зависит от выходного напряжения при неизменном выходном токе, поэтому с ростом выходного напряжения процент вносимых потерь будет уменьшаться.


Рис. 5б.

На рис. 5в приведены зависимости КПД от величины индуктивности на выходе. В диапазоне от 2 до 10 мкГн эффективность преобразования практически не изменяется, что позволяет выбирать величину индуктивности из широкого диапазона номиналов. Конечно, нужно стремиться к максимально возможному уровню индуктивности для обеспечения лучшей фильтрации напряжения пульсаций выходного тока. Понятно, что с ростом значений выходного тока КПД уменьшается. Это объясняется ростом потерь в выходных каскадах DC/DC-преобразователей.


Рис. 5в.

Сравнение с микросхемами других производителей

В таблицах 3, 4 и 5 приведены параметры близких по функциональному значению микросхем от других производителей.

Из таблицы 3 видно, что FAN2013MPX — это полный аналог для микросхемы ST1S09IPUR, но у компании STMicroelectronics дополнительно в этой серии есть микросхема ST1S09PUR с наличием выхода «Power Good», что расширяет выбор разработчика.

Таблица 3. Близкие замены микросхем для DC/DC-преобразователей от других производителей

Производитель Наименование Iвых макс., А Частота
преобразования, МГц
Power Good Совместимость
по выводам
Корпус
STMicroelectronics ST1S09PUR 2 1,5 Есть Есть DFN3x3-6
ST1S09IPUR Нет Есть
Fairchild Semiconductor FAN2013MPX 2 1,3 Нет Есть DFN3x3-6

В таблице 4 приведены функциональные замены (нет совместимости по выводам) от других производителей для микросхем ST1S10. Основное преимущество микросхем ST1S10 — наличие синхронного выпрямления в выходных каскадах, что обеспечивает более высокий КПД преобразования. Кроме того, корпус DFN8 (4х4 мм) имеет меньшие размеры по сравнению с корпусами функционально близких микросхем других производителей. Внутренняя схема компенсации позволяет сократить количество внешних компонентов обвязки микросхем.

Таблица 4. Близкие замены микросхем ST1S10PxR для понижающих DC/DC-преобразователей от других производителей

Производитель Наименование Iвых макс., А Синхронное выпрямление Компенсация Мягкий запуск Совмести- мость
по выводам
Корпус
STMicroelectronics ST1S10PHR 3 Есть Внутренняя Внутренний - PowerSO-8
ST1S10PUR DFN8 (4×4 мм)
Monolithic Power Systems MP2307/MP1583 3 Есть/Нет Внешняя Внешний Нет SO8-EP
Alpha & Omega Semiconductor AOZ1013 3 Нет Внешняя Внутренний Нет SO8
Semtech SC4521 3 Нет Внешняя Внешний Нет SO8-EP
AnaChip AP1510 3 Нет Внутренняя Внутренний Нет SO8

В таблице 5 показаны возможные замены для микросхем ST1S12. Основное преимущество микросхем ST1S12 — большее значение максимально допустимого выходного тока: до 700 мА. Микросхема MP2104 фирмы MPS совместима по выводам с микросхемой ST1S12. Микросхемы LM3674 и LM3671 можно рассматривать только в качестве близкой функциональной замены для ST1S112 из-за отсутствия совместимости по выводам.

Таблица 5. Близкие замены микросхем ST1S12 для понижающих DC/DC-преобразователей от других производителей

Производитель Наименование Iвых
(макс.), мА
Частота
преобразования, МГц
Vвх (макс.), В Вход
отключения
Совмести- мость
по выводам
Корпус
STMicroelectronics ST1S12 700 1,7 5,5 есть - TSOT23-5L
Monolithic Power Systems MP2104 600 1,7 6 есть есть TSOT23-5L
National Semiconductor LM3674 600 2 5,5 есть нет SOT23-5L
LM3671 600 2 5,5 есть нет SOT23-5L

Выбор микросхем для
DC/DC-преобразователей на сайте

Для быстрого поиска электронных компонентов по известным параметрам удобнее всего воспользоваться сайтом . Для параметрического поиска на этом сайте настоятельно рекомендуется установить и использовать бесплатную программу для просмотра сайтов (браузер) «Google Chrome». Работа в этом браузере ускоряет поиск в несколько раз. Микросхемы для DC/DC-преобразователей компании STMicroelectronics можно найти на сайте по следующему пути: «Управление питанием» ® «ИМС для DC/DC» ® «Регуляторы (+ключ)». Далее можно выбрать бренд «ST» и активировать фильтр «Склад» для выбора только тех компонентов, которые имеются на складе. Результат этих действий показан на рис. 6. Можно сделать более конкретную выборку по требуемым параметрам, применяя другие фильтры.

Заключение

Особенно важен правильный выбор микросхем для DC/DC-преобразователей в приборах с автономными источниками питания. В некоторых случаях выбор подходящей схемы питания может оказаться трудной задачей, но, уделив достаточно времени проработке и выбору схемы электропитания устройства, можно добиться определенного преимущества над конкурентами за счет более компактного и недорогого решения с более высокой эффективностью преобразования электрической энергии. Микросхемы для DC/DC-преобразователей STMicroelectronics облегчают выбор и позволяют реализовать заложенные в них преимущества при создании конкурентоспособных схем электропитания.

Получение технической информации, заказ образцов, поставка — e-mail:

Для питания различной электронной аппаратуры весьма широко используются DC/DC преобразователи. Применяются они в устройствах вычислительной техники, устройствах связи, различных схемах управления и автоматики и др.

Трансформаторные блоки питания

В традиционных трансформаторных блоках питания напряжение питающей сети с помощью трансформатора преобразуется, чаще всего понижается, до нужного значения. Пониженное напряжение и сглаживается конденсаторным фильтром. В случае необходимости после выпрямителя ставится полупроводниковый стабилизатор.

Трансформаторные блоки питания, как правило, оснащаются линейными стабилизаторами. Достоинств у таких стабилизаторов не менее двух: это маленькая стоимость и незначительное количество деталей в обвязке. Но эти достоинства съедает низкий КПД, поскольку значительная часть входного напряжения используется на нагрев регулирующего транзистора, что совершенно неприемлемо для питания переносных электронных устройств.

DC/DC преобразователи

Если питание аппаратуры осуществляется от гальванических элементов или аккумуляторов, то преобразование напряжения до нужного уровня возможно лишь с помощью DC/DC преобразователей.

Идея достаточно проста: постоянное напряжение преобразуется в переменное, как правило, с частотой несколько десятков и даже сотен килогерц, повышается (понижается), а затем выпрямляется и подается в нагрузку. Такие преобразователи часто называются импульсными.

В качестве примера можно привести повышающий преобразователь из 1,5В до 5В, как раз выходное напряжение компьютерного USB. Подобный преобразователь небольшой мощности продается на Алиэкспресс.

Рис. 1. Преобразователь 1,5В/5В

Импульсные преобразователи хороши тем, что имеют высокий КПД, в пределах 60..90%. Еще одно достоинство импульсных преобразователей широкий диапазон входных напряжений: входное напряжение может быть ниже выходного или намного выше. Вообще DC/DC конвертеры можно разделить на несколько групп.

Классификация конвертеров

Понижающие, по английской терминологии step-down или buck

Выходное напряжение этих преобразователей, как правило, ниже входного: без особых потерь на нагрев регулирующего транзистора можно получить напряжение всего несколько вольт при входном напряжении 12…50В. Выходной ток таких преобразователей зависит от потребности нагрузки, что в свою очередь определяет схемотехнику преобразователя.

Еще одно англоязычное название понижающего преобразователя chopper. Один из вариантов перевода этого слова - прерыватель. В технической литературе понижающий конвертер иногда так и называют «чоппер». Пока просто запомним этот термин.

Повышающие, по английской терминологии step-up или boost

Выходное напряжение этих преобразователей выше входного. Например, при входном напряжении 5В на выходе можно получить напряжение до 30В, причем, возможно его плавное регулирование и стабилизация. Достаточно часто повышающие преобразователи называют бустерами.

Универсальные преобразователи - SEPIC

Выходное напряжение этих преобразователей удерживается на заданном уровне при входном напряжении как выше входного, так и ниже. Рекомендуется в случаях, когда входное напряжение может изменяться в значительных пределах. Например, в автомобиле напряжение аккумулятора может изменяться в пределах 9…14В, а требуется получить стабильное напряжение 12В.

Инвертирующие преобразователи - inverting converter

Основной функцией этих преобразователей является получение на выходе напряжения обратной полярности относительно источника питания. Очень удобно в тех случаях, когда требуется двухполярное питание, например .

Все упомянутые преобразователи могут быть стабилизированными или нестабилизированными, выходное напряжение может быть гальванически связано с входным или иметь гальваническую развязку напряжений. Все зависит от конкретного устройства, в котором будет использоваться преобразователь.

Чтобы перейти к дальнейшему рассказу о DC/DC конвертерах следует хотя бы в общих чертах разобраться с теорией.

Понижающий конвертер чоппер - конвертер типа buck

Его функциональная схема показана на рисунке ниже. Стрелками на проводах показаны направления токов.

Рис.2. Функциональная схема чопперного стабилизатора

Входное напряжение Uin подается на входной фильтр - конденсатор Cin. В качестве ключевого элемента используется транзистор VT, он осуществляет высокочастотную коммутацию тока. Это может быть либо . Кроме указанных деталей в схеме содержится разрядный диод VD и выходной фильтр - LCout, с которого напряжение поступает в нагрузку Rн.

Нетрудно видеть, что нагрузка включена последовательно с элементами VT и L. Поэтому схема является последовательной. Как же происходит понижение напряжения?

Широтно-импульсная модуляция - ШИМ

Схема управления вырабатывает прямоугольные импульсы с постоянной частотой или постоянным периодом, что в сущности одно и то же. Эти импульсы показаны на рисунке 3.

Рис.3. Импульсы управления

Здесь tи время импульса, транзистор открыт, tп - время паузы, - транзистор закрыт. Соотношение tи/T называется коэффициентом заполнения duty cycle, обозначается буквой D и выражается в %% или просто в числах. Например, при D равном 50% получается, что D=0,5.

Таким образом D может изменяться от 0 до 1. При значении D=1 ключевой транзистор находится в состоянии полной проводимости, а при D=0 в состоянии отсечки, попросту говоря, закрыт. Нетрудно догадаться, что при D=50% выходное напряжение будет равно половине входного.

Совершенно очевидно, что регулирование выходного напряжения происходит за счет изменения ширины управляющего импульса tи, по сути дела изменением коэффициента D. Такой принцип регулирования называется (PWM). Практически во всех импульсных блоках питания именно с помощью ШИМ производится стабилизация выходного напряжения.

На схемах, показанных на рисунках 2 и 6 ШИМ «спрятана» в прямоугольниках с надписью «Схема управления», которая выполняет некоторые дополнительные функции. Например, это может быть плавный запуск выходного напряжения, дистанционное включение или защита преобразователя от короткого замыкания.

Вообще конвертеры получили столь широкое применение, что фирмы производители электронных компонентов наладили выпуск ШИМ контроллеров на все случаи жизни. Ассортимент настолько велик, что просто для того чтобы их перечислить понадобится целая книга. Поэтому собирать конвертеры на дискретных элементах, или как часто говорят на «рассыпухе», никому не приходит в голову.

Более того готовые конвертеры небольшой мощности можно купить на Алиэкспрес или Ebay за незначительную цену. При этом для установки в любительскую конструкцию достаточно припаять к плате провода на вход и выход, и выставить требуемое выходное напряжение.

Но вернемся к нашему рисунку 3. В данном случае коэффициент D определяет, сколько времени будет открыт (фаза 1) или закрыт (фаза 2) . Для этих двух фаз можно представить схему двумя рисунками. На рисунках НЕ ПОКАЗАНЫ те элементы, которые в данной фазе не используются.

Рис.4. Фаза 1

При открытом транзисторе ток от источника питания (гальванический элемент, аккумулятор, выпрямитель) проходит через индуктивный дроссель L, нагрузку Rн, и заряжающийся конденсатор Cout. При этом через нагрузку протекает ток, конденсатор Cout и дроссель L накапливают энергию. Ток iL ПОСТЕПЕННО ВОЗРАСТАЕТ, сказывается влияние индуктивности дросселя. Эта фаза называется накачкой.

После того, как напряжение на нагрузке достигнет заданного значения (определяется настройкой устройства управления), транзистор VT закрывается и устройство переходит ко второй фазе - фазе разряда. Закрытый транзистор на рисунке не показан вовсе, как будто его и нет. Но это означает лишь то, что транзистор закрыт.

Рис.5. Фаза 2

При закрытом транзисторе VT пополнения энергии в дросселе не происходит, поскольку источник питания отключен. Индуктивность L стремится воспрепятствовать изменению величины и направления тока (самоиндукция) протекающего через обмотку дросселя.

Поэтому ток мгновенно прекратиться не может и замыкается через цепь «диод-нагрузка». Из-за этого диод VD получил название разрядный. Как правило, это быстродействующий диод Шоттки. По истечении периода управления фаза 2 схема переключается на фазу 1, процесс повторяется снова. Максимальное напряжение на выходе рассмотренной схемы может быть равным входному, и никак не более. Чтобы получить выходное напряжение больше, чем входное, применяются повышающие преобразователи.

Пока только следует напомнить собственно о величине индуктивности, которая определяет два режима работы чоппера. При недостаточной индуктивности преобразователь будет работать в режиме разрывных токов, что совершенно недопустимо для источников питания.

Если же индуктивность достаточно большая, то работа происходит в режиме неразрывных токов, что позволяет с помощью выходных фильтров получить постоянное напряжение с приемлемым уровнем пульсаций. В режиме неразрывных токов работают и повышающие преобразователи, о которых будет рассказано ниже.

Для некоторого повышения КПД разрядный диод VD заменяется транзистором MOSFET, который в нужный момент открывается схемой управления. Такие преобразователи называются синхронными. Их применение оправдано, если мощность преобразователя достаточно велика.

Повышающие step-up или boost преобразователи

Повышающие преобразователи применяются в основном при низковольтном питании, например, от двух-трех батареек, а некоторые узлы конструкции требуют напряжения 12…15В с малым потреблением тока. Достаточно часто повышающий преобразователь кратко и понятно называют словом «бустер».

Рис.6. Функциональная схема повышающего преобразователя

Входное напряжение Uin подается на входной фильтр Cin и поступает на последовательно соединенные L и коммутирующий транзистор VT. В точку соединения катушки и стока транзистора подключен диод VD. К другому выводу диода подключены нагрузка Rн и шунтирующий конденсатор Cout.

Транзистор VT управляется схемой управления, которая вырабатывает сигнал управления стабильной частоты с регулируемым коэффициентом заполнения D, так же, как было рассказано чуть выше при описании чопперной схемы (Рис.3). Диод VD в нужные моменты времени блокирует нагрузку от ключевого транзистора.

Когда открыт ключевой транзистор правый по схеме вывод катушки L соединяется с отрицательным полюсом источника питания Uin. Нарастающий ток (сказывается влияние индуктивности) от источника питания протекает через катушку и открытый транзистор, в катушке накапливается энергия.

В это время диод VD блокирует нагрузку и выходной конденсатор от ключевой схемы, тем самым предотвращая разряд выходного конденсатора через открытый транзистор. Нагрузка в этот момент питается энергией накопленной в конденсаторе Cout. Естественно, что напряжение на выходном конденсаторе падает.

Как только напряжение на выходе станет несколько ниже заданного, (определяется настройками схемы управления), ключевой транзистор VT закрывается, и энергия, запасенная в дросселе, через диод VD подзаряжает конденсатор Cout, который подпитывает нагрузку. При этом ЭДС самоиндукции катушки L складывается с входным напряжением и передается в нагрузку, следовательно, напряжение на выходе получается больше входного напряжения.

По достижении выходным напряжением установленного уровня стабилизации схема управления открывает транзистор VT, и процесс повторяется с фазы накопления энергии.

Универсальные преобразователи - SEPIC (single-ended primary-inductor converter или преобразователь с несимметрично нагруженной первичной индуктивностью).

Подобные преобразователи применяются в основном, когда нагрузка имеет незначительную мощность, а входное напряжение изменяется относительно выходного в большую или меньшую сторону.

Рис.7. Функциональная схема преобразователя SEPIC

Очень похожа на схему повышающего преобразователя, показанного на рисунке 6, но имеет дополнительные элементы: конденсатор C1 и катушку L2. Именно эти элементы и обеспечивают работу преобразователя в режиме понижения напряжения.

Преобразователи SEPIC применяются в тех случаях, когда входное напряжение изменяется в широких пределах. В качестве примера можно привести 4V-35V to 1.23V-32V Boost Buck Voltage Step Up/Down Converter Regulator. Именно под таким названием в китайских магазинах продается преобразователь, схема которого показана на рисунке 8 (для увеличения нажмите на рисунок).

Рис.8. Принципиальная схема преобразователя SEPIC

На рисунке 9 показан внешний вид платы с обозначением основных элементов.

Рис.9. Внешний вид преобразователя SEPIC

На рисунке показаны основные детали в соответствии с рисунком 7. Следует обратить внимание на наличие двух катушек L1 L2. По этому признаку можно определить, что это именно преобразователь SEPIC.

Входное напряжение платы может быть в пределах 4…35В. При этом выходное напряжение может настраиваться в пределах 1,23…32В. Рабочая частота преобразователя 500КГц.При незначительных размерах 50 x 25 x 12мм плата обеспечивает мощность до 25 Вт. Максимальный выходной ток до 3А.

Но тут следует сделать замечание. Если выходное напряжение установить на уровне 10В, то выходной ток не может быть выше 2,5А (25Вт). При выходном напряжении 5В и максимальном токе 3А мощность составит всего 15Вт. Здесь главное не перестараться: либо не превысить максимально допустимую мощность, либо не выйди за пределы допустимого тока.