Отражается звук. Скорость звука

Звуковое давление р зависит от скорости v колеблющихся частиц среды. Вычисления показывают, что

где р - плотность среды, с - скорость звуковой волны в среде. Произведение рс называют удельным акустическим импедансом, для плоской волны его называют также волновым сопро­тивлением.

Волновое сопротивление - важнейшая характеристика среды, определяющая условия отражения и преломления волн на ее гра­нице.

Представим себе, что звуковая волна попадает на границу раздела двух сред. Часть волны отражается, а часть - преломляется. Законы отражения и преломления звуковой волны аналогичны Законам отражения и преломления света. Преломленная волна может поглотиться во второй среде, а может выйти из нее.

Допустим, что плоская волна падает нормально к границе раз­дела, интенсивность ее в первой среде I 1 интенсивность прелом­ленной (прошедшей) волны во второй среде 1 2 . Назовем

коэффициентом проникновения звуковой волны.

Рэлей показал, что коэффициент проникновения звука опреде­ляется формулой


Если волновое сопротивление второй среды весьма велико по сравнению с волновым сопротивлением первой среды (с 2 р 2 >> с 1 ρ 1), то вместо (6.7) имеем

так как с 1 ρ 1 /с 2 р 2 >>1. Приведем волновые сопротивления некоторых веществ при 20 °С (табл. 14).

Таблица 14

Используем (6.8) для вычисления коэффициента проникнове­ния звуковой волны из воздуха в бетон и в воду:

Эти данные производят впечатление: оказывается, только очень малая часть энергии звуковой волны проходит из воздуха в бетон и в воду.

Во всяком закрытом помещении отраженный от стен, потолков, мебели звук падает на другие стены, полы и пр., вновь отражается и поглощается и постепенно угасает. Поэтому даже после того, как источник звука прекратит действие, в помещении все еще имеются звуковые волны, которые создают гул. Особенно это заметно в больших просторных залах. Процесс постепенного затухания звука в закрытых помещениях после выключения источника называют реверберацией.



Реверберация, с одной стороны, полезна, так как восприятие звука усиливается за счет энергии отраженной волны, но, с другой стороны, чрезмерно длительная реверберация может существенно ухудшить восприятие речи, музыки, так как каждая новая часть текста перекрывается предыдущими. В связи с этим обычно указывают некоторое оптимальное время реверберации, которое учитывается при постройке аудиторий, театральных и концертных залов и т. п. Например, время реверберации заполненного Колонного зала Дома союзов в Москве равно 1,70 с, заполненного в большого театра - 1,55 с. Для этих помещений (пустых) время реверберации соответственно 4,55 и 2,06 с.

Физика слуха

Рассмотрим некоторые вопросы физики слуха на примере наружного, среднего и внутреннего уха. Наружное ухо состоит из ушной раковины 1 и наружного слухового прохода 2 (рис. 6.8).В Ушная раковина у человека не играет существенной роли для слуха. Она способствует определению локализации источника звука при его расположении в передне-заднем направлении. Поясним это. Звук от источника попадает в ушную раковину. В зависимости от положения источника в вертикальной плоскости

(рис. 6.9) звуковые волны будут по-разному дифрагировать на ушной раковине из-за ее специфической формы. Это приведет и к из­менению спектрального состава звуковой волны, попадающей в слуховой проход (более детально вопросы дифракции рассматри­ваются в гл. 19). Человек в результате опыта научился ассоцииро­вать изменение спектра звуковой волны с направлением на источ­ник звука (направления А, Б и Б на рис. 6.9).

Обладая двумя звукоприемниками (ушами), человек и живот­ные способны установить направление на источник звука и в гори­зонтальной плоскости (бинауральный эффект; рис. 6.10). Это объ­ясняется тем, что звук от источника до разных ушей проходит раз­ное расстояние и возникает разность фаз для волн, попадающих в правую и левую ушные раковины. Связь между разностью этих расстояний (5) и разностью фаз (∆φ) выведена в § 19.1 при объясне­нии интерференции света [см. (19.9)]. Если источник звука нахо­дится прямо перед лицом человека, то δ = 0 и ∆φ = 0, если источник звука расположен сбоку против одной из ушных раковин, то в дру­гую ушную раковину он попадет с запаздыванием. Будем считать приближенно, что в этом случае 5 есть расстояние между ушными раковинами. По формуле (19.9) можно рассчитать для v = 1 кГц и δ = 0,15 м разность фаз. Она приблизительно равна 180°.

Различным направлениям на источник звука в горизонтальной плоскости будут соответствовать разности фаз между 0° и 180° (для приведенных выше данных). Считают, что человек с нормальным слухом может фиксировать направления на источник звука с точ­ностью до 3°, этому соответствует разность фаз 6°. Поэтому можно полагать, что человек способен различать изменение разности фаз звуковых волн, попадающих в его уши, с точностью до 6°.



Кроме фазового различия бинауральному эффекту способству­ет неодинаковость интенсивностей звука у разных ушей, а также и «акустическая тень» от головы для одного уха. На рис. 6.10 схе­матично показано, что звук от источника попадает в левое

ухо в результате дифракции (гл. 19).

Звуковая волна проходит через слуховой проход и частично от­ражается от барабанной перепонки 3 (см. рис. 6.8). В результате интерференции падающей и отраженной волн может возникнуть акустический резонанс. В этом случае длина волны в четыре раза, больше длины наружного слухового прохода. Длина слухового прохода у человека приблизительно равна 2,3 см; следовательно, акустический резонанс возникает при частоте

Наиболее существенной частью среднего уха являются барабан­ная перепонка 3 и слуховые косточки: молоточек 4, наковальня 5 и стремечко 6 с соответствующими мышцами, сухожилиями и связ­ками. Косточки осуществляют передачу механических колебаний от воздушной среды наружного уха к жидкой среде внутреннего. Жидкая среда внутреннего уха имеет волновое сопротивление, при­близительно равное волновому сопротивлению воды. Как было по­казано (см. § 6.4), при прямом переходе звуковой волны из воздуха в воду передается лишь 0,123% падающей интенсивности. Это слиш­ком мало. Поэтому основное назначение среднего уха - способство­вать передаче внутреннему уху большей интенсивности звука. Ис­пользуя технический язык, можно сказать, что среднее ухо согласует волновые сопротивления воздуха и жидкости внутреннего уха.

Система косточек (см. рис. 6.8) на одном конце молоточком связана с барабанной перепонкой (площадь S 1 = 64 мм 2), на дру­гом - стремечком - с овальным окном 7 внутреннего уха (пло­щадь S 2 = 3 мм 2).


На овальное окно внутреннего уха при этом действует сила F 2 , создающая Звуковое давление р 2 в жидкой среде. Связь между ними:
Разделив (6.9) на (6.10) и сопоставляя это соотношение с (6.11), получаем
откуда



или в логарифмических единицах (см. § 1.1)

На таком уровне увеличивает среднее ухо передачу наружного звукового давления внутреннему уху.

Еще одна из функций среднего уха - ослабление передачи ко­лебаний в случае звука большой интенсивности. Это осуществля­ется рефлекторным расслаблением мышц косточек среднего уха.

Среднее ухо соединяется с атмосферой через слуховую (евста­хиеву) трубу.

Наружное и среднее ухо относятся к звукопроводящей систе­ме. Звуковоспринимающей системой является внутреннее ухо.

Главной частью внутреннего уха является улитка, преобразую­щая механические колебания в электрический сигнал. Кроме улитки к внутреннему уху относится вестибулярный аппарат (см. § 4.3), который к слуховой функции отношения не имеет.

Улитка человека является костным образованием длиной около 35 мм и имеет форму конусообразной спирали с 2 3 / 4 завитков. Диа­метр у основания около 9 мм, высота равна приблизительно 5 мм.

На рис. 6.8 улитка (ограничена штриховой линией) показана схематично развернутой для удобства рассмотрения. Вдоль улитки проходят три канала. Один из них, который начинается от овального окна 7, называется вестибулярной лестницей 8. Дру­гой канал идет от круглого окна 9, он называется барабанной лестницей 10. Вестибулярная и барабанная лестницы соединены в области купола улитки посредством маленького отверстия - геликотремы 11. Таким образом, оба эти канала в некотором роде представляют единую систему, наполненную перилимфой. Колебания стремечка 6 передаются мембране овального окна 7, от нее перилимфе и «выпячивают» мембрану круглого окна 9. Простран­ство между вестибулярной и барабанной лестницами называется улитковым каналом 12, он заполнен эндолимфой. Между улит­ковым каналом и барабанной лестницей вдоль улитки проходит основная (базилярная) мембрана 13. На ней находится кортиев орган, содержащий рецепторные (волосковые) клетки, от улитки идет слуховой нерв (на рис. 6.8 эти подробности не показаны).

Кортиев орган (спиральный орган) и является преобразовате­лем механических колебаний в электрический сигнал.

Длина основной мембраны около 32 мм, она расширяется и утончается в направлении от овального окна к верхушке улитки (от ширины 0,1 до 0,5 мм). Основная мембрана - весьма интересная для физики структура, она обладает частотно-избирательными свойствами. На это обратил внимание еще Гельмгольц, который

представлял основную мембрану аналогично ряду настроенных струн пианино. Лауреат Нобелевской премии Бекеши установил ошибочность этой резонаторной теории. В работах Бекеши было показано, что основная мембрана является неоднородной линией, передачи механического возбуждения. При воздействии акустическим стимулом по основной мембране распространяется волна. В зависимости от частоты эта волна по-разному затухает. Чем меньше частота, тем дальше от овального окна распространится волна по основной мембране, прежде чем она начнет затухать. Так, например, волна с частотой 300 Гц до начала затухания распространятся приблизительно до 25 мм от овального окна, а волна с частотой 100 Гц достигает своего максимума вблизи 30 мм. На основании этих наблюдений были разработаны теории, согласно которым восприятие высоты тона определяется положением максимума колебания основной мембраны. Таким образом, во внутреннем ухе прослеживается определенная функциональная цепь: колебание мембраны овального окна - колебание перилимфы - сложные колебания основной мембраны - сложные колебания основной мембрны - раздражение волосковых клеток (рецепторы кортиева органа) - генерация электрического сигнала.

Некоторые формы глухоты связаны с поражением рецепторного аппарата улитки. В этом случае улитка не генерирует электрические сигналы при воздействии механических колебаний. Можно помочь таким глухим, для этого необходимо имплантировать электроды в улитку и подавать на них электрические сигналы, соответствующие тем, которые возникают при воздействии механического стимула.

Такое протезирование основной функции, улитки (кохлеарное протезирование) разра­батывается в ряде стран. В России кохлеар­ное протезирование разработано и осуществ­лено в Российском медицинском университе­те. Кохлеарный протез показан на рис. 6.12, здесь 1 - основной корпус, 2 - заушина с микрофоном, 3 - вилка электрического разъема для подсоединения к имплантируе­мым электродам.

Если звуковая волна не встречает препятствий на своём пути, она распространяется равномерно по всем направлениям. Но и не всякое препятствие становится преградой для неё.

Встретив препятствие на своём пути, звук может огибать его, отражаться, преломляться или поглощаться.

Дифракция звука

Мы можем разговаривать с человеком, стоящим за углом здания, за деревом или за забором, хотя и не видим его. Мы слышим его, потому что звук способен огибать эти предметы и приникать в область, находящуюся за ними.

Способность волны огибать препятствие называется дифракцией .

Дифракция возможна, когда длина звуковой волны превышает размер препятствия. Звуковые волны низкой частоты имеют довольно большую длину. Например, при частоте 100 Гц она равна 3,37 м. С уменьшением частоты длина становится ещё больше. Поэтому звуковая волна с лёгкостью огибает объекты, соизмеримые с ней. Деревья в парке совершенно не мешают нам слышать звук, потому что диаметры их стволов значительно меньше длины звуковой волны.

Благодаря дифракции, звуковые волны проникают через щели и отверстия в препятствии и распространяются за ними.

Расположим на пути звуковой волны плоский экран с отверстием.

В случае, когда длина звуковой волны ƛ намного превышает диаметр отверстия D , или эти величины примерно равны, то позади отверстия звук достигнет всех точек области, которая находится за экраном (область звуковой тени). Фронт выходящей волны будет выглядеть как полусфера.

Если же ƛ лишь немного меньше диаметра щели, то основная часть волны распространяется прямо, а небольшая часть незначительно расходится в стороны. А в случае, когда ƛ намного меньше D , вся волна пойдёт в прямом направлении.

Отражение звука

В случае попадания звуковой волны на границу раздела двух сред, возможны разные варианты её дальнейшего распространения. Звук может отразиться от поверхности раздела, может перейти в другую среду без изменения направления, а может преломиться, то есть перейти, изменив своё направление.

Предположим, на пути звуковой волны появилось препятствие, размер которого намного больше длины волны, например, отвесная скала. Как поведёт себя звук? Так как обогнуть это препятствие он не может, то он отразится от него. За препятствием находится зона акустической тени .

Отражённый от препятствия звук называется эхом .

Характер отражения звуковой волны может быть разным. Он зависит от формы отражающей поверхности.

Отражением называют изменение направления звуковой волны на границе раздела двух разных сред. При отражении волна возвращается в среду, из которой она пришла.

Если поверхность плоская, звук отражается от неё подобно тому, как отражается луч света в зеркале.

Отражённые от вогнутой поверхности звуковые лучи фокусируются в одной точке.

Выпуклая поверхность звук рассеивает.

Эффект рассеивания дают выпуклые колонны, крупные лепные украшения, люстры и т.д.

Звук не переходит из одной среды в другую, а отражается от неё, если плотности сред значительно отличаются. Так, звук, появившийся в воде, не переходит в воздух. Отражаясь от границы раздела, он остаётся в воде. Человек, стоящий на берегу реки, не услышит этот звук. Это объясняется большой разницей волновых сопротивлений воды и воздуха. В акустике волновое сопротивление равно произведению плотности среды на скорость звука в ней. Так как волновое сопротивление газов значительно меньше волновых сопротивлений жидкостей и твёрдых тел, то попадая на границу воздуха и воды, звуковая волна отражается.

Рыбы в воде не слышат звук, появляющийся над поверхностью воды, но хорошо различают звук, источником которого является тело, вибрирующее в воде.

Преломление звука

Изменение направления распространения звука называется преломлением . Это явление возникает, когда звук переходит из одной среды в другую, и скорости его распространения в этих средах различны.

Отношение синуса угла падения к синусу угла отражения равно отношению скоростей распространения звука в средах.

где i – угол падения,

r – угол отражения,

v 1 – скорость распространения звука в первой среде,

v 2 – скорость распространения звука во второй среде,

n – показатель преломления.

Преломление звука называют рефракцией .

Если звуковая волна падает не перпендикулярно поверхности, а под углом, отличным от 90 о, то преломлённая волна отклонится от направления падающей волны.

Рефракция звука может наблюдаться не только на границе раздела сред. Звуковые волны могут менять своё направление в неоднородной среде – атмосфере, океане.

В атмосфере причиной рефракции служат изменения температуры воздуха, скорость и направление перемещения воздушных масс. А в океане она появляется из-за неоднородности свойств воды – разного гидростатического давления на разных глубинах, разной температуры и разной солёности.

Поглощение звука

При встрече звуковой волны с поверхностью, часть её энергии поглощается. А какое количество энергии может поглотить среда, можно определить, зная коэффициент поглощения звука. Этот коэффициент показывает, какую часть энергии звуковых колебаний поглощает 1 м 2 препятствия. Он имеет значение от 0 до 1.

Единицу измерения звукопоглощения называют сэбин . Своё название она получила по имени американского физика Уоллеса Клемента Сэбина, основателя архитектурной акустики. 1 сэбин – это энергия, которую поглощает 1 м 2 поверхности, коэффициент поглощения которой равен 1. То есть, такая поверхность должна поглощать абсолютно всю энергию звуковой волны.

Реверберация

Уоллес Сэбин

Свойство материалов поглощать звук широко используют в архитектуре. Занимаясь исследованием акустики Лекционного зала, части построенного Fogg Museum, Уоллес Клемент Сэбин пришёл к выводу, что существует зависимость между размерами зала, акустическими условиями, типом и площадью звукопоглощающих материалов и временем реверберации .

Реверберацией называют процесс отражения звуковой волны от препятствий и её постепенное затухание после выключения источника звука. В закрытом помещении звук может многократно отражаться от стен и предметов. В результате возникают различные эхосигналы, каждый из которых звучит как бы обособленно. Этот эффект называют эффектом реверберации .

Самой важной характеристикой помещения является время реверберации , которое ввёл и вычислил Сэбин.

где V – объём помещения,

А – общее звукопоглощение.

где a i – коэффициент звукопоглощения материала,

S i - площадь каждой поверхности.

Если время реверберации велико, звуки словно "бродят" по залу. Они накладываются друг на друга, заглушают основной источник звука, и зал становится гулким. При маленьком времени реверберации стены быстро поглощают звуки, и они становятся глухими. Поэтому для каждого помещения должен быть свой точный расчёт.

По результатам своих вычислений Сэбин расположил звукопоглощающие материалы таким образом, что уменьшился «эффект эха». А Симфонический Зал Бостона, при создании которого он был акустическим консультантом, до сих пор считается одним из лучших залов в мире.

Как во всяком волновом процессе, при падении звуковых волн на препят-ствие ограниченных размеров помимо интерференции наблюдается их отраже-ние (рис.1.10). При этом углы падения и отражения равны друг другу. Следова-тельно, плоские и выпуклые поверхности рассеивают звук (рис.1.10 а, б и в.), а вогнутые – фокусируя, концентрируют его в некоторой точке (рис.1.10 г) .

Рис.1.10 Отражение звуковых волн от поверхностей различной формы

При падении волн на границу двух сред (рис.1.11) часть звуковой энергии отражается, а часть проходит во вторую среду.


Рис. 1.11 Отражение и прохождение волн на границе двух сред

Согласно закону сохранения энергии сумма прошедшей Е прош. и отражен-ной Е отр. энергий равна энергии падающей волны Е пад, , т.е.

Епад = Еотр. + Епрош. (1.59)

Разделим правую и левую части формулы на Е пад .

1 = (Е отр./ Епад) +(Епрош/ Епад)

Слагаемые в вышеприведенном соотношении показывают, какая доля па-дающей энергии отразилась, и какая доля прошла дальше. Они представляют собой коэффициенты отражения и прохождения. Вводя для них обозначения η и τ соответственно, получим

На рис.1.12 показано изменение коэффициентов отражения и прохожде-ния в зависимости от соотношения акустических сопротивлений граничащих сред. Из графика видно, что величина коэффициентов зависит только от абсо-


лютного значения отношений акустических сопротивлений сред, но не зависит от того, какое из этих сопротивлений больше. Этим можно объяснить тот факт, что звук, распространяющийся в какой-либо массивной стенке, претерпевает такое же отражение от границы раздела с воздушной средой, что и звук, рас-пространяющийся в воздухе, при отражении от этой стены.

Рис. 1.12. Коэффициенты η и τ в зависимости от соотношения акустических сопротивлей граничаших сред (Z 1 /Z 2)

В ряде случаев представляет интерес знать, как изменится звуковое дав-ление или колебательная скорость частиц при прохождении через границу двух сред. Поскольку интенсивность звуковой энергии пропорциональна квадратам звукового давления и виброскорости, то очевидно коэффициент отражения для давления и скорости можно найти по формуле

Вышеприведенные формулы для коэффициентов отражения и прохождения можно использовать в расчетах одномерных звуководов при изменении их се-чения (рис.1.13), если площади сечения S 1 и S 2 не слишком отличаются. При


Рис.1.13. Изменение сечений звуковода

Звукопоглощение

Поглощение звука (демпфирование, диссипация) - превращение звуко-вой энергии в тепло. Оно вызывается как теплопроводностью и вязкостью (классическое поглощение), так и внутримолекулярным отражением. При очень больших амплитудах, которые встречаются лишь вблизи очень мощных источ-ников звука или при сверхзвуковом ударе, возникают нелинейные процессы, приводящие к искажению формы волны и к усиленному поглощению.

Для звука в газах и жидкостях поглощение имеет практически важное значение только тогда, когда звук распространяется на большие расстояния (как минимум несколько сотен значений длины волны) или если на пути звука встречаются тела с очень большой поверхностью.

Рассмотрим процесс прохождения звука через препятствие (рис.1.14). Энергия падающего звука Е пад . разделяется на энергию отраженную от пре-пятствия Е отр , поглощенную в нем Е погл и энергию прошедшую через препят-

Согласно закону сохранения энергии


Рис.1.14. Распределение энергии при падении звука на препятствие.

Этот процесс можно оценить отношениями энергий прошедшей, погло-щенной и отраженной к энергии, падающей на препятствие:

τ = Е прош. / Е пад; η = Е отр. / Е пад; α = Е погл. / Е пад; (1.67)

Как уже было сказано выше, первые два отношения называют коэффици-ентами прохождения τ и отражения η . Третий коэффициент характеризует долю поглощенной энергии и называется коэффициентом поглощения α. Оче-видно, что из (1.66) следует

α + η + τ = 1 (1.68)

Поглощение звука обусловлено переходом колебательной энергии в теп-ло вследствие потерь на трение в материале. Потери на трение велики в порис-тых и рыхлых волокнистых материалах. Конструкции из таких материалов уменьшают интенсивность отраженных от поверхности звуковых волн. Звуко-поглотители, расположенные внутри помещения, могут уменьшать также ин-тенсивность прямого звука, если они располагаются на пути распространения звуковых волн.

Резонаторы.

Эффективным поглотителем звуковых волн, а в некоторых случаях их усилителем может служить так называемый резонатор. Под резонатором пони-


мается система типа "масса-пружина", в которой роль колеблющейся массы играет масса воздуха в узком отверстии или в щели пластины, а роль пружины

– упругий объем воздуха в полости за пластиной. Схематическое изображение резонатора Гельмгольца приведено на рис.1.15

Рис. 1.15. Резонатор Гельмгольца

Рассмотрим простейший воздушный резонатор, т.е. сосуд с жесткими стенками и узким горлом. При падении на него звуковой волны определенной частоты воздушная "пробка" в горле сосуда приходит в интенсивное колеба-тельное движение. Колебательная скорость частиц в горле в несколько раз пре-вышает колебательную скорость в свободном звуковом поле ξ . Во внутреннем объеме резонатора в это время соответственно увеличивается давление р . Если подвести к внутренней полости резонатора трубку, то воспринимаемый звук будет громче.

В тоже время, при достаточно больших потерях на трение резонатор мо-жет выполнять функции не усилителя, а поглотителя звуковой энергии. Если в горло резонатора ввести слой звукопоглощающего материала, то поглощение заметно возрастет.

Собственная круговая частота ω о с массой m на пружине с жесткостью s можно найти по известной формуле

правки, величина которых зависит от формы горлышка и площади его попе-речного сечения. Таким образом, собственная частота резонатора определится как

fo = с о S (1.72)
V (l + l i + l α )

В таких резонансных системах в присутствии внешнего источника звука заключенный в полости воздух колеблется с ним в унисон с амплитудой, зави-сящей от соотношения между величинами периодов собственного и вынужден-ного колебаний. При отключении источника резонатор отдает назад накоплен-ные внутри него колебания, становясь на короткое время вторичным источни-ком.

В зависимости от характеристик, резонатор может либо усиливать, либо поглощать звуковые колебания на той или иной частоте.

Звукопоглощение резонатора описывается с помощью условной характе-ристики звукопоглощающего сечения А . Под ним понимается условная пло-щадь сечения, перпендикулярного направлению распространения падающей волны, через которую свободной волной (при отсутствии резонатора) передает-ся мощность, равная поглощаемой резонатором.


Положим, что размеры резонатора малы по сравнению с длиной падаю-щей волны. Тогда, в первом приближении, можно пренебречь рассеянием зву-ковой энергии на корпусе резонатора. Если принять отверстие резонатора за-крытым акустически жестко, то звуковое давление в горлышке p h = p l , а ко-лебательная скорость υ = p h / Z h (если резонатор находится на экране, то в приведенных формулах добавится множитель 2 ).

Импеданс горлышка резонатора складывается из внутреннего потерь R i , активного сопротивления излучения R r и реактивных сопротивлений массы и упругости.


2 . П Р О М Ы Ш Л Е Н Н А Я А К У С Т И К А

Отражение звуковых волн от границы раздела двух сред имеет очень большое практическое значение. Рассмотрим опыт, иллюстрирующий законы отражения звука (§ 24.19).

Положим на дно стеклянной мензурки ручные часы. Если встать на таком расстоянии от мензурки, чтобы часов не было слышно, а затем поместить над отверстием мензурки стеклянную пластинку, как показано на рис. 25.7, то ход часов будет слышен. Меняя угол наклона пластинки и положение уха, можно убедиться, что угол падения равен углу отражения.

Интересный случай отражения звука получается, когда отражающая поверхность расположена перпендикулярно к направлению распространения волн. В этом случае звуковая волна после отражения возвращается назад к своему источнику. Возвращение звуковой волны к своему источнику после отражения называется эхом.

Оказывается, человек сохраняет звуковое ощущение в течение

0,1 с после прекращения колебаний барабанной перепонки в ухе. Это означает, что при небольшом расстоянии от отражающей поверхности до уха эхо сольется с основным звуком и лишь немного удлинит его продолжительность. Значит, эхо можно слышать раздельно от основного звука только при достаточно большом расстоянии до препятствия.

Это позволяет определить расстояние от источника звука до отражающей поверхности. Пусть расстояние от источника звука А до отражающей поверхности В равно I (рис. 25.8). Если время между отправлением звукового сигнала из точки А и его возвращением в эту же точку равно а скорость звука равна то откуда

Ясно, что звуковой сигнал должен быть кратковременным, так как при длительном сигнале эхо сольется с основным звуком и время t определить не удастся. (Покажите, что при скорости звука в воздухе 344 м/с (при 20°С) эхо будет слышно раздельно от основного звука, если расстояние до отражающей поверхности превышает 17,2 м.)

В закрытом помещении происходит многократное отражение звука от стен, что увеличивает продолжительность звучания после прекращения действия источника звука.

Остаточное звучание в закрытом помещении называется реверберацией. Для небольших помещений время реверберации должно составлять около 1 с. Время реверберации сильно влияет на качество звука в концертных залах, так как при слишком большом времени реверберации музыку слушать нельзя, а слишком маленькое время реверберации делает звуки блеклыми и отрывистыми.

На границе раздела двух сред звук не только отражается, но и поглощается при проникновении в другую среду. Энергия звуковых волн при этом частично превращается в энергию хаотического движения молекул среды. Например, оштукатуренная стена поглощает около 8% энергии звуковых волн, а ковер - около 20%. Этим объясняется тот факт, - что в комнате, заставленной вещами, звук глухой, а в пустой комнате звук громким.

Акустика помещений (геометрическая теория)

Геометрическая (лучевая) теория

Основные положения. Геометрическая (лучевая) теория акустических процессов в помещениях основана на законах геометрической оптики. Движение звуковых волн рассматривают подобно движению световых лучей. В соответствии с законами геометрической оптики при отражении от зеркальных поверхностей угол отражения b равен углу падения a, и падающий и отраженный лучи лежат в одной плоскости. Это справедливо, если размеры отражающих поверхностей много больше длины волны, а размеры неровностей поверхностей много меньше длины волны.

Характер отражения зависит от формы отражающей поверхности. При отражении от плоской поверхности (рис.7, а) возникает мнимый источник И", место которого ощущается на слух подобно тому, как глаз видит мнимый источник света в зеркале. Отражение от вогнутой поверхности (рис.7, б) приводит к фокусировке лучей в точке И". Выпуклые поверхности (колонны, пилястры, крупные лепные украшения, люстры) рассеивают звук (рис.7, в).

Роль начальных отражений. Немаловажным для слухового восприятия является запаздывание отраженных звуковых волн. Звук, излученный источником, доходит до преграды (например, стены) и отражается от нее. Процесс многократно повторяется с потерей при каждом отражении части энергии. На места слушателей (или в точку расположения микрофона) первые запаздывающее импульсы, как правило, приходят после отражения от потолка и стен зала (студии).

Вследствие инерционности слуха человек обладает способностью сохранять (интегрировать) слуховые ощущения, объединять их в общее впечатление, если они длятся не более 50 мс (точнее 48 мс). Поэтому к полезному звуку, подкрепляющему исходный, относятся все волны, которые достигают уха в течение 50 мс после исходного звука. Запаздыванию на 50 мс соответствует разница в пути 17 м. Концентрированные звуки, приходящие позднее, воспринимаются как эхо. Отражения от преград, укладывающиеся в указанный промежуток времени, являются полезными, желательными, так как они увеличивают ощущение громкости на значения, доходящие до 5 - 6 дБ, улучшают качество звучания, придавая звуку "живость", "пластичность", "объемность". Таковы эстетические оценки музыкантов.

Исследования начальных отражений методом акустического моделирования были проведены в Научно-исследовательском кинофотоинституте (НИКФИ) под руководством А. И. Качеровича. Изучалось влияние на качество звучания речи и музыки формы, объема, линейных размеров, размещения звукопоглощающих материалов. Получены интересные результаты.

Существенную роль играет направление прихода начальных отражений. Если запаздывающие сигналы, т.е. все ранние отражения, поступают к слушателю с того же направления, что и прямой сигнал, слух почти не различает разницы в качестве звучания по сравнению со звучанием только прямого звука. Возникает впечатление "плоского" звука, лишенного объемности. Между тем даже приход только трех запаздывающих сигналов по разным направлениям, несмотря на отсутствие реверберационного процесса, создает эффект пространственного звучания. Качество звучания зависит от того, с каких направлений и в какой последовательности приходят запаздывающие звуки. Если первое отражение поступает с фронтальной стороны, звучание ухудшается, а если с тыльной стороны, то резко ухудшается.

Весьма существенно время запаздывания начальных отражений по отношению к моменту прихода прямого звука и относительно друг друга. Длительности запаздывания должны быть различными для наилучшего звучания речи и музыки. Хорошая разборчивость речи достигается, если первый запаздывающий сигнал поступает не позже 10 - 15 мс после прямого, а все три должны занимать интервал времени 25 - 35 мс. При звучании музыки наилучшее ощущение пространственности и "прозрачности" достигается, если первое отражение приходит к слушателю не ранее 20 мс и не позже 30 мс после прямого сигнала. Все три запаздывающих сигнала должны располагаться в промежутке времени 45 - 70 мс. Наилучший пространственный эффект достигается, если уровни запаздывающих начальных сигналов незначительно отличаются друг от друга и от уровня прямого сигнала.

При подключении к структуре начальных отражений (первого, второго, третьего) остальной части отзвука наиболее благоприятное звучание получается в том случае, когда вторая часть процесса начинается после всех дискретных отражений. Подключение же процесса реверберации (отзвука) сразу же за прямым сигналом ухудшает качество звучания.

При обеспечении оптимальной структуры начальных (ранних) отражений звучание музыки остается хорошим даже при значительном (на 10 - 15%) отклонении времени реверберации от рекомендуемого. Достижение оптимального запаздывания отраженных сигналов по отношению к прямому звуку выдвигает требование к минимальному объему помещения, которое не рекомендуется нарушать. Между тем при проектировании помещения выбирают его размеры, исходя из заданной вместимости, т.е. решают задачу чисто экономически, что неправильно. Даже в небольшом концертном зале оптимальную структуру ранних отражений можно получить лишь при заданных высоте и ширине зала перед эстрадой, меньше которых спускаться нельзя. Известно, например, что звучание симфонического оркестра в зале с низким потолком существенно хуже, чем в зале с высоким потолком.

Полученные результаты дали возможность выработать рекомендации в отношении времени запаздывания и размеров зала. Учитывалось, что первый запаздывающий сигнал, как правило, приходит от потолка, второй - от боковых стен, третий - от задней стены зала. Разные требования по времени задержки начальных отражений объясняются особенностями речи и музыкальных звуков и различием решаемых акустических задач.

Вид звучания
Речь
Музыка

Чтобы добиться хорошей разборчивости речи, запаздывания должны быть сравнительно небольшими. При звучании музыки нужно подчеркнуть мелодическое начало, для обеспечения слитности звуков необходимо большее время запаздывания начальных отражений. Отсюда вытекают рекомендуемые размеры концертных залов: высота и ширина не менее 9 и 18,5 м соответственно и не более (у портала) 9 и 25 м.

Увеличивать высоту и ширину зала в некоторой мере можно лишь на расстоянии от портала сцены (эстрады), превышающем примерно 1/4 - 1/3 общей длины зала: высоту до 10,5 м, ширину до 30 м. Длину зала выбирают, учитывая необходимость получать на самых удаленных слушательских местах достаточную энергию прямого звука. Исходя из этого обстоятельства, рекомендуют выбирать длину зала по партеру не более 40 м, а по балкону - 46 м.

В таблице приводим сведения о геометрии некоторых залов, акустические качества которых считаются хорошими (n - вместимость зала, lп - наибольшее удаление слушателя от эстрады в партере, lб - то же на балконе, Dt1 - время запаздывания первого отражения).

Колонный зал Дома союзов, Москва

Большой зал московской консерватории

Малый зал московской консерватории

Зал Академической капеллы, С-Петербург

Концертный зал, Бостон

Концертный зал, Нью-Йорк

Концертный зал, Зальцбург

Концертный зал, Каракас

Таким образом, минимальные размеры помещения для воспроизведения музыки (высота и ширина) не связаны с его вместимостью, а определяются необходимой структурой начальных отражений. Даже если помещение предназначено для исполнения музыки в отсутствии слушателей (студия звукозаписи, звукового вещания, ателье записи музыки, зал прослушивания киностудии), его размеры должны определяться только качеством звучания музыки. "Экономить" на этих размерах - значительно ухудшать качество звучания.

Исторические примеры. По сохранившимся до наших времен культовым и зрелищным сооружениям видно, что основные положения лучевой теории были известны древним строителям и что эти положения неукоснительно соблюдались. Размеры греческих и римских театров на открытом воздухе были выбраны такими, чтобы в наибольшей степени использовать энергию отраженных волн.

Театры содержали три основные части:

  • Сцену (shena) глубиной 3,5 - 4 м в Греции и 6 - 8 м в Риме, на которой разыгрывалось театральное действие;
  • Площадку перед сценой - орхестру (orhestra буквально "место плясок"), на которой располагался хор и выступали танцоры;
  • Поднимающиеся ступенями зрительские места вокруг орхестры, образующие так называемый амфитеатр (от греческих слов amphi - "с обеих сторон", "кругом" и theatron - "место зрелищ").

Звуки от исполнителей достигали зрителей, располагавшихся на амфитеатре, прямым путем 1, а также после отражений от поверхности орхестры (луч 2) и стены 3, находящихся позади сцены (рис.9,а). Плоскость орхестры покрывали хорошо отражающим материалом. Как указывал Витрувий, высоту стены 3 следовало выбирать равной высоте парапета 4, ограждавшего верхний ряд амфитеатра, "для улучшения акустики". Видимо, речь шла о том, чтобы не допустить излишнего рассеяния звуковой энергии в пространстве. Глубину сцены в греческих театрах делали небольшой, чтобы лучи 5, отраженные от задней стены, не слишком запаздывали по отношению к прямому лучу 1 и не ухудшали разборчивость речи актеров. Часть звуковой энергии, отразившись от стен 3 и 4, уходила вверх. В современных крытых театральных залах эта энергия отражается потолком вниз и увеличивает интенсивность звука на зрительских местах. На орхестре происходили танцы и располагался хор, повторявший реплики актеров, т.е. выполнявший задачу звукоусиления. При расположении хора в точке 1 звуковые лучи, отразившись от стены 3 (рис.9,б), приходят к зрителю с большой задержкой во времени, вызывающей эхо. Для уменьшения этого недостатка в римских театрах хор стали располагать ближе к сцене, в точке 2. Тогда для направления энергии в сторону зрителей начали использовать отражения от сцены (ее высота в римских театрах достигала 3,5 м), а освободившуюся часть орхестры заняли танцоры. В современных театрах перед сценой находятся музыканты, и на них перешло название занимаемой ими площадки.


Рис. 9

Особую роль в усилении и обогащении звучания играли так называемые "гармоники" - системы резонаторов в виде бронзовых цилиндрических сосудов и глиняных кувшинов-амфор. Они располагались в нишах стены позади зрительских мест и под скамьями. Греки считали, что для благозвучия речи и музыки резонаторы должны быть подобраны или настроены по тонам музыкальных гамм: энгармонической, хроматической и диатонической.

  • Первая система, по мнению их создателей, придавала звукам торжественность и строгость;
  • Вторая, благодаря "толпящимся" нотам, - утонченность, нежность звучанию;
  • Третья - из-за консонансности интервалов - естественность музыкальному исполнению.

Очевидно, что античные архитекторы при строительстве театров искали и находили технические пути передачи зрителям и слушателям не только смысловой (семантической), но и художественной (эстетической) информации, стремились обогатить музыкальное звучание.

Рациональной формой и разумно выбранными размерами отличались театральные и концертные залы 18 и 19 веков. Ряд хороших в акустическом отношении театральных и концертных залов был построен в разных странах в 20 веке.

Неудачные решения. Казалось бы, опыт, накопленный за тысячелетия, должен использоваться современными архитекторами и строителями. Между тем множатся примеры неудовлетворительных акустических решений, например, строительство залов круглой или эллиптической в плане формы (кинотеатр "Колизей" в Санкт-Петербурге, концертный зал им. Чайковского в Москве и др.). В них образуются зоны фокусировки отраженных лучей и зоны, в которые отраженные лучи либо не попадают, либо попадают с большой временной задержкой. В круглом в плане зале (рис.10 справа) касательный к стене луч 1 и при последующих отражениях остается в близкой к стене зоне. Лучи 2, распространяющиеся примерно в диаметральном направлении, образуют после отражения мнимое изображение источника И", в котором интенсивность звука, как и в кольцевой зоне возле стены, повышена. Неудовлетворительными являются залы с плоским потолком и низким порталом сцены (рис.11, а). Зона АВС оказывается своеобразной ловушкой для значительной части, излучаемой источником звука энергии. Только зона DE дает полезные отражения, но они попадают лишь в удаленную часть зала ЕС. Предпочтительнее конструкции с рассеивающим потолком (рис.11,б), акустической раковиной и козырьком (рис.11,в).


Рис 11

Неудовлетворительным в акустическом отношении являлся знаменитый зал Альберт-холл в Лондоне шириной 56 м при высоте 39 м. Ввиду необычайно большой высоты зала разница в пути между прямым звуком и звуками, отраженными от потолка, достигала 60 м, что давало запаздывание почти на 200 мс. Центр кривизны вогнутого потолка находился в зоне, занятой слушателями, что порождало сильное эхо.

Примером неудачного акустического решения может служить Большой зал Центрального театра Российской армии (ЦТРА). Основные недостатки зала: большая ширина, равная в середине зала 42 м, и чрезмерно высокий потолок - у портала 18 м над планшетом сцены (рис.12). Отражения от боковых стен не приходят в центральную часть зала, а первые отражения от потолка поступают в середину партера с запаздыванием более 35 мс. В результате разборчивость речи в партере низкая, несмотря на близость актеров к публике. Форма задней стены зала и парапета балкона является частью окружности, центр которой расположен на авансцене в точке О. Звуки, отраженные от задней стены и парапета балкона, возвращаются в эту же точку и прослушиваются как сильное эхо, ибо запаздывание превышает 50 мс. При перемещении актера в точку И сопряженные фокусы И" и И" смещаются в партер. В результате эхо возникает в первых рядах партера.

Когда-то хорошей акустикой отличался актовый зал МТУСИ, где даже проводились симфонические концерты, транслировавшиеся по радио. Акустические условия значительно ухудшились после косметического ремонта зала. Была изменена конструкция ограждения балкона, в глубине которого был поставлен отражающий щит. Сильные отражения от парапета и щита ухудшили звучание в партере. Из-за больших запаздываний снизилась разборчивость речи.

Примером неудачного акустического решения является и Центральный концертный зал гостиницы "Россия" в Москве. Квадратная в плане форма зала привела к обеднению спектра собственных частот, низкий потолок создает малую задержку первых отражений, а большая ширина зала приводит к тому, что отражения от стен не попадают в первую половину партера. Трижды пытались улучшить звучание заменой звукопоглощающих материалов и их размещением в зале. Однако скомпенсировать заведомо неудачную исходную форму зала не удалось.


Рис. 12

Даже в помещениях с правильно выбранными формой и линейными размерами, пропорции которых приближаются к "золотому сечению", обнаруживаются недостатки звучания, устранение которых занимает много времени, сил и средств. В тщательной подготовке к нормальной эксплуатации нуждаются студии звукового и телевизионного вещания. Примером может служить комплекс работ по подготовке студии N5 Государственного дома радиовещания и звукозаписи (ГДРЗ). Студия предназначена для исполнения произведений крупных форм с участием симфонического оркестра и хора в присутствии слушателей. Ее линейные размеры (29,8 х 20,5 х 14 м) почти соответствуют "золотому сечению", расчетное время реверберации на средних частотах 2,3 с. Ввиду большой высоты и ширины время прихода начальных отражений не оптимально. Для уменьшений длины путей отраженных лучей над местом расположения оркестра и на боковых стенах были укреплены отражающие панели. Потребовалось несколько раз изменять положение панелей и уменьшать площадь звукопоглощающих конструкций, прежде чем музыканты и звукорежиссеры признали качество звучания хорошим. Из этого примера видно, насколько тонкой и скрупулезной является акустическая настройка помещений.

Встречаются залы, рассчитанные на небольшое количество слушателей, соответственно небольшой площади и невысокие. Авторы их, по-видимому, полагали, что при небольших размерах зала "все будет хорошо слышно". В действительности в таких залах на слушательских местах образуется плотная структура начальных отражений. Из-за этого при небольшом времени реверберации звучание оказывается "плоским", подобно звучанию на открытом воздухе, а при большом времени реверберации теряется "прозрачность" звучания, начинается маскировка последующих музыкальных звуков предыдущими.

Также неудовлетворительны большей частью так называемые актовые залы. Они предназначаются для собраний, т.е. для звучания речи. Низкий потолок, гладкие параллельные стены, лишенные акустической отделки порождают неоптимальные начальныфяе отражения. Попытки проводить в них концерты не приносят успеха. Музыка звучит в них плохо. Хуже всего, что концерты в таких залах портят публику. Ниже всякой критики акустика так называемых "концертно-спортивных" залов.

В нашей стране большой вред качеству театральных и концертных залов принесла "борьба с архитектурными излишествами". "Излишествами" были объявлены все звукорассеивающие и звукопоглощающие конструкции и даже мягкая обивка кресел, призванная служить эквивалентом отсутствующих зрителей. В результате - на слушательских местах плохая структура начальных отражений, невысокая диффузность, а при частичном заполнении - чрезмерная "гулкость".

Лучшие залы. Непревзойденными по качеству звучания остаются Колонный зал Дома союзов, Большой и Малый залы Московской консерватории, Большой зал Санкт-Петербургской филармонии и некоторые другие залы старой постройки.

К достижениям отечественной архитектурной акустики следует отнести зрительные залы Детского музыкального театра, Театра им. Евг. Вахтангова, Московского драматического театра им. А.С. Пушкина, Дворца культуры ЗиЛ, студии Государственного дома звукозаписи, ателье записи звука и зал прослушивания "Мосфильма". При их проектировании и строительстве были учтены положения и рекомендации отечественных и зарубежных акустиков.

В этих залах соблюдены требования геометрической акустики: рационально выбраны форма и размеры, что обеспечило высокую степень диффузности поля и оптимизацию времен запаздывания начальных отражений. В каждом конкретном случае выбраны свои архитектурно-планировочные решения. Залам сравнительно небольшой ширины придана форма прямоугольного параллелепипеда. Таковы Большой и Малый залы Московской консерватории, Большой зал московского Дома ученых. При небольшой ширине количество отражений, приходящих на места слушателей, быстро нарастает со временем и в завершающей части процесса реверберации настолько велико, что обеспечивает хорошую диффузность поля. В залах большой ширины (Колонный зал Дома союзов, Большой зал Санкт-Петербургской филармонии) введены звукорассеивающие конструкции в виде ряда колонн. В современных залах большой вместимости хорошего рассеяния звуков достигают членением стен и потолка и установкой крупных рассеивающих поверхностей на стенах.

Важное значение имеет материал, которым отделаны стены и потолок. Наилучшим является дерево. Звучание музыки в залах, отделанных деревом, отличается красивой тембральной окраской. Наоборот, совершенно противопоказаны железобетонные конструкции, особенно тонкие, и штукатурка по сетке рабица. Звуки, отраженные от этих поверхностей, обладают неприятным "металлическим" оттенком.

Заключение

Три рассмотренные теории с разных сторон объясняют акустические процессы, происходящие в помещениях. Из них только одна - статистическая - позволяет определить численно важную величину, характеризующую акустические свойства помещения - время реверберации. Следует лишь сознательно, критически относиться к получаемой числовой оценке, понимать, что в большинстве случаев, особенно при рассмотрении крупных помещений, она носит ориентировочный характер.

По современным воззрениям принято разделять процесс отзвука, реверберации на две части: начальные, сравнительно редкие запаздывающие импульсы, и более уплотняющаяся во времени последовательность импульсов. Первую часть отзвука оценивают с позиций геометрической (лучевой) теории, вторую - с позиций статистической теории.

Геометрическая теория более приложима к анализу акустических процессов в помещениях больших размеров - концертных и театральных залах, крупных студиях. Оптимальные размеры зала (студии) определяют на основе анализа начальных отражений. При проектировании больших помещений расчет времени реверберации может дать результат, значительно отличающийся от реального, и главное - эта величина не позволяет полностью оценить акустическое качество помещения. В такой оценке главную роль играют начальные отражения. Правильное временное соотношение начальных отражений обеспечивает высокое качество звучания даже тогда, когда время реверберации отличается от оптимального.

Статистическая и волновая теории особенно применимы к помещениям сравнительно малых размеров, например к студиям звукового вещания и аудиториям различного назначения. Результаты этих теорий как бы дополняют друг друга. Первая дает возможность оценить время реверберации, вторая - рассчитать спектр собственных (резонансных) частот, скорректировать размеры помещения так, чтобы спектр собственных частот в области нижних частот был более равномерным.

Было бы очень интересно и важно объединить положения акустических теорий, создать единую теорию, объясняющую с общих позиций сложные акустические процессы, протекающие в помещениях разного назначения, разной формы и разных размеров. Но пока это не достигнуто, остается сознательно использовать существующие теории и добиваться с их помощью наилучших решений.

Литература

  • Акустика: Справочник / под ред. М.А. Сапожкова. - М.: Радио и связь, 1989.
  • Бреховских Л.М. Распространение волн в слоистых средах. - М.-Л.: Изд. АН СССР, 1958.
  • Дрейзен И.Г. Курс электроакустики, ч. 1. - М.: Связьрадиоиздат, 1938.
  • Дрейзен И.Г. Электроакустика и звуковое вещание. - М.: Связьиздат, 1951.
  • Емельянов Е.Д. Звукофикация театров и концертных залов. - М.: Искусство, 1989.
  • Контюри Л. Акустика в строительстве. - М.: Стройиздат, I960.
  • Макриненко Л.И. Акустика помещений общественного назначения. - М.: Стройиздат, 1986.
  • Морз Ф. Колебания и звук. - М.-Л.: Гостехиздат, 1949.
  • Сапожков М.А. Звукофикация помещений. - М.: Связь, 1979.
  • Скучик Е. Основы акустики. - М.: Изд. иностр. лит., 1959.
  • Стрэтт Дж.В. (лорд Релей). Теория звука. - М.: ГИТТЛ, 1955.
  • Фурдуев В.В. Электроакустика. - М.-Л.: ОГИЗ-ГИТТЛ. 1948.
  • Фурдуев В.В. Акустические основы вещания. - М.: Связьиздат, 1960.
  • Фурдуев В.В. Моделирование в архитектурной акустике // Техника кино и телевидения, 1966. N 10
Адрес администрации сайта:

НЕ НАШЕЛ, ЧТО ИСКАЛ? ПОГУГЛИ: