Математический смысл производной функции. Определение производной функции через предел

Процесс нахождения производной функции называется дифференцированием. Производную приходится находить в ряде задач курса математического анализа. Например, при отыскании точек экстремума и перегиба графика функции.

Как найти?

Чтобы найти производную функции нужно знать таблицу производных элементарных функций и применять основные правила дифференцирования :

  1. Вынос константы за знак производной: $$ (Cu)" = C(u)" $$
  2. Производная суммы /разности функций: $$ (u \pm v)" = (u)" \pm (v)" $$
  3. Производная произведения двух функций: $$ (u \cdot v)" = u"v + uv" $$
  4. Производная дроби : $$ \bigg (\frac{u}{v} \bigg)" = \frac{u"v - uv"}{v^2} $$
  5. Производная сложной функции : $$ (f(g(x)))" = f"(g(x)) \cdot g"(x) $$

Примеры решения

Пример 1
Найти производную функции $ y = x^3 - 2x^2 + 7x - 1 $
Решение

Производная суммы/разности функций равна сумме/разности производных:

$$ y" = (x^3 - 2x^2 + 7x - 1)" = (x^3)" - (2x^2)" + (7x)" - (1)" = $$

Используя правило производной степенной функции $ (x^p)" = px^{p-1} $ имеем:

$$ y" = 3x^{3-1} - 2 \cdot 2 x^{2-1} + 7 - 0 = 3x^2 - 4x + 7 $$

Так же было учтено, что производная от константы равна нулю.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ y" = 3x^2 - 4x + 7 $$

Производной функции называется базовый элемент в дифференциальном исчислении. Этот элемент и является определенным результатом применения какой-то определенной операции дифференцирования по отношению к исходной функции.

Определение производной

Для того, чтобы понять, что такое производная, необходимо знать, что название функции происходит непосредственно от слова «произведенная», то есть образовавшаяся от другой какой-либо величины. При этом сам процесс определения производной какой-то определенной функции имеет название - «дифференцирование».

Наиболее распространенный метод представления и определения, при использовании теории пределов, несмотря на то, что она появилась гораздо позже дифференциальных исчислений. По определению данной теории, производной называется предел в отношении приращения функций к приращению аргумента, в случае если таковой предел имеется, и при условии, что данный аргумент стремится к нулевому значению.

Рассмотренный ниже небольшой пример поможет наглядно понять, что такое производная.

  1. Для поиска производной функции f в точке х, нам нужно определить значения данной функции непосредственно в точке х, а так же в точке х+Δх. Причем Δx – это приращения аргумента х.
  2. Найти приращение для функции у приравненное к f(х+Δх) – f(х).
  3. Записать производную при помощи предела отношения f’ = lim(f(x+Δх) – f(x))/Δх, исчислить при Δх → 0.

Обычно производная обозначается знаком апострофа - «’» непосредственно над дифференцируемой функцией. Обозначение в виде одного апострофа обозначает первую производную, в виде двух – вторую. Производную наивысшего порядка принято задавать соответствующей цифрой, к примеру f^(n) – что означает производную n-го порядка, где буква «n» – целое число, которое? 0. Производная нулевого порядка - это и есть сама дифференцируемая функция.

С целью облегчения дифференцирования усложненных функций, были разработаны и приняты определенные правила дифференцирования функций:

  • С’ = 0, где С – обозначение константы;
  • х’ равняется 1;
  • (f + g)’ приравнивается f’ + g’;
  • (С*f)’ приравнено C*f’ и так далее.
  • Для N-кратного дифференцирования удобнее применять формулу Лейбница в виде: (f*g) (n) = Σ C(н) k *f (н-k) *g к, в которой С(н) к – обозначения биномиальных коэффициентов.

Производная и геометрия

Геометрическое осмысление производной заключается в том, что если для функции f имеется конечная производная в пункте х, то значение данной производной будет равняться тангенсу угла от наклона в касательной к функции f в данной точке.

Производная функции - одна из сложных тем в школьной программе. Не каждый выпускник ответит на вопрос, что такое производная.

В этой статье просто и понятно рассказано о том, что такое производная и для чего она нужна . Мы не будем сейчас стремиться к математической строгости изложения. Самое главное - понять смысл.

Запомним определение:

Производная - это скорость изменения функции.

На рисунке - графики трех функций. Как вы думаете, какая из них быстрее растет?

Ответ очевиден - третья. У нее самая большая скорость изменения, то есть самая большая производная.

Вот другой пример.

Костя, Гриша и Матвей одновременно устроились на работу. Посмотрим, как менялся их доход в течение года:

На графике сразу все видно, не правда ли? Доход Кости за полгода вырос больше чем в два раза. И у Гриши доход тоже вырос, но совсем чуть-чуть. А доход Матвея уменьшился до нуля. Стартовые условия одинаковые, а скорость изменения функции, то есть производная , - разная. Что касается Матвея - у его дохода производная вообще отрицательна.

Интуитивно мы без труда оцениваем скорость изменения функции. Но как же это делаем?

На самом деле мы смотрим, насколько круто идет вверх (или вниз) график функции. Другими словами - насколько быстро меняется у с изменением х. Очевидно, что одна и та же функция в разных точках может иметь разное значение производной - то есть может меняться быстрее или медленнее.

Производная функции обозначается .

Покажем, как найти с помощью графика.

Нарисован график некоторой функции . Возьмем на нем точку с абсциссой . Проведём в этой точке касательную к графику функции. Мы хотим оценить, насколько круто вверх идет график функции. Удобная величина для этого - тангенс угла наклона касательной .

Производная функции в точке равна тангенсу угла наклона касательной, проведённой к графику функции в этой точке.

Обратите внимание - в качестве угла наклона касательной мы берем угол между касательной и положительным направлением оси .

Иногда учащиеся спрашивают, что такое касательная к графику функции. Это прямая, имеющая на данном участке единственную общую точку с графиком, причем так, как показано на нашем рисунке. Похоже на касательную к окружности.

Найдем . Мы помним, что тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему. Из треугольника :

Мы нашли производную с помощью графика, даже не зная формулу функции. Такие задачи часто встречаются в ЕГЭ по математике под номером .

Есть и другое важное соотношение. Вспомним, что прямая задается уравнением

Величина в этом уравнении называется угловым коэффициентом прямой . Она равна тангенсу угла наклона прямой к оси .

.

Мы получаем, что

Запомним эту формулу. Она выражает геометрический смысл производной.

Производная функции в точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке.

Другими словами, производная равна тангенсу угла наклона касательной.

Мы уже сказали, что у одной и той же функции в разных точках может быть разная производная. Посмотрим, как же связана производная с поведением функции.

Нарисуем график некоторой функции . Пусть на одних участках эта функция возрастает, на других - убывает, причем с разной скоростью. И пусть у этой функции будут точки максимума и минимума.

В точке функция возрастает. Касательная к графику, проведенная в точке , образует острый угол с положительным направлением оси . Значит, в точке производная положительна.

В точке наша функция убывает. Касательная в этой точке образует тупой угол с положительным направлением оси . Поскольку тангенс тупого угла отрицателен, в точке производная отрицательна.

Вот что получается:

Если функция возрастает, ее производная положительна.

Если убывает, ее производная отрицательна.

А что же будет в точках максимума и минимума? Мы видим, что в точках (точка максимума) и (точка минимума) касательная горизонтальна. Следовательно, тангенс угла наклона касательной в этих точках равен нулю, и производная тоже равна нулю.

Точка - точка максимума. В этой точке возрастание функции сменяется убыванием. Следовательно, знак производной меняется в точке с «плюса» на «минус».

В точке - точке минимума - производная тоже равна нулю, но ее знак меняется с «минуса» на «плюс».

Вывод: с помощью производной можно узнать о поведении функции всё, что нас интересует.

Если производная положительна, то функция возрастает.

Если производная отрицательная, то функция убывает.

В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».

В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».

Запишем эти выводы в виде таблицы:

возрастает точка максимума убывает точка минимума возрастает
+ 0 - 0 +

Сделаем два небольших уточнения. Одно из них понадобится вам при решении задач ЕГЭ. Другое - на первом курсе, при более серьезном изучении функций и производных.

Возможен случай, когда производная функции в какой-либо точке равна нулю, но ни максимума, ни минимума у функции в этой точке нет. Это так называемая :

В точке касательная к графику горизонтальна, и производная равна нулю. Однако до точки функция возрастала - и после точки продолжает возрастать. Знак производной не меняется - она как была положительной, так и осталась.

Бывает и так, что в точке максимума или минимума производная не существует. На графике это соответствует резкому излому, когда касательную в данной точке провести невозможно.

А как найти производную, если функция задана не графиком, а формулой? В этом случае применяется

Если следовать определению, то производная функции в точке — это предел отношения приращения функции Δy к приращению аргумента Δx :

Вроде бы все понятно. Но попробуйте посчитать по этой формуле, скажем, производную функции f (x ) = x 2 + (2x + 3) · e x · sin x . Если все делать по определению, то через пару страниц вычислений вы просто уснете. Поэтому существуют более простые и эффективные способы.

Для начала заметим, что из всего многообразия функций можно выделить так называемые элементарные функции. Это относительно простые выражения, производные которых давно вычислены и занесены в таблицу. Такие функции достаточно просто запомнить — вместе с их производными.

Производные элементарных функций

Элементарные функции — это все, что перечислено ниже. Производные этих функций надо знать наизусть. Тем более что заучить их совсем несложно — на то они и элементарные.

Итак, производные элементарных функций:

Название Функция Производная
Константа f (x ) = C , C R 0 (да-да, ноль!)
Степень с рациональным показателем f (x ) = x n n · x n − 1
Синус f (x ) = sin x cos x
Косинус f (x ) = cos x − sin x (минус синус)
Тангенс f (x ) = tg x 1/cos 2 x
Котангенс f (x ) = ctg x − 1/sin 2 x
Натуральный логарифм f (x ) = ln x 1/x
Произвольный логарифм f (x ) = log a x 1/(x · ln a )
Показательная функция f (x ) = e x e x (ничего не изменилось)

Если элементарную функцию умножить на произвольную постоянную, то производная новой функции тоже легко считается:

(C · f )’ = C · f ’.

В общем, константы можно выносить за знак производной. Например:

(2x 3)’ = 2 · (x 3)’ = 2 · 3x 2 = 6x 2 .

Очевидно, элементарные функции можно складывать друг с другом, умножать, делить — и многое другое. Так появятся новые функции, уже не особо элементарные, но тоже дифференцируемые по определенным правилам. Эти правила рассмотрены ниже.

Производная суммы и разности

Пусть даны функции f (x ) и g (x ), производные которых нам известны. К примеру, можно взять элементарные функции, которые рассмотрены выше. Тогда можно найти производную суммы и разности этих функций:

  1. (f + g )’ = f ’ + g
  2. (f g )’ = f ’ − g

Итак, производная суммы (разности) двух функций равна сумме (разности) производных. Слагаемых может быть больше. Например, (f + g + h )’ = f ’ + g ’ + h ’.

Строго говоря, в алгебре не существует понятия «вычитание». Есть понятие «отрицательный элемент». Поэтому разность f g можно переписать как сумму f + (−1) · g , и тогда останется лишь одна формула — производная суммы.

f (x ) = x 2 + sin x; g (x ) = x 4 + 2x 2 − 3.

Функция f (x ) — это сумма двух элементарных функций, поэтому:

f ’(x ) = (x 2 + sin x )’ = (x 2)’ + (sin x )’ = 2x + cos x;

Аналогично рассуждаем для функции g (x ). Только там уже три слагаемых (с точки зрения алгебры):

g ’(x ) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · (x 2 + 1).

Ответ:
f ’(x ) = 2x + cos x;
g ’(x ) = 4x · (x 2 + 1).

Производная произведения

Математика — наука логичная, поэтому многие считают, что если производная суммы равна сумме производных, то производная произведения strike ">равна произведению производных. А вот фиг вам! Производная произведения считается совсем по другой формуле. А именно:

(f · g ) ’ = f ’ · g + f · g

Формула несложная, но ее часто забывают. И не только школьники, но и студенты. Результат — неправильно решенные задачи.

Задача. Найти производные функций: f (x ) = x 3 · cos x; g (x ) = (x 2 + 7x − 7) · e x .

Функция f (x ) представляет собой произведение двух элементарных функций, поэтому все просто:

f ’(x ) = (x 3 · cos x )’ = (x 3)’ · cos x + x 3 · (cos x )’ = 3x 2 · cos x + x 3 · (− sin x ) = x 2 · (3cos x x · sin x )

У функции g (x ) первый множитель чуть посложней, но общая схема от этого не меняется. Очевидно, первый множитель функции g (x ) представляет собой многочлен, и его производная — это производная суммы. Имеем:

g ’(x ) = ((x 2 + 7x − 7) · e x )’ = (x 2 + 7x − 7)’ · e x + (x 2 + 7x − 7) · (e x )’ = (2x + 7) · e x + (x 2 + 7x − 7) · e x = e x · (2x + 7 + x 2 + 7x −7) = (x 2 + 9x ) · e x = x (x + 9) · e x .

Ответ:
f ’(x ) = x 2 · (3cos x x · sin x );
g ’(x ) = x (x + 9) · e x .

Обратите внимание, что на последнем шаге производная раскладывается на множители. Формально этого делать не нужно, однако большинство производных вычисляются не сами по себе, а чтобы исследовать функцию. А значит, дальше производная будет приравниваться к нулю, будут выясняться ее знаки и так далее. Для такого дела лучше иметь выражение, разложенное на множители.

Если есть две функции f (x ) и g (x ), причем g (x ) ≠ 0 на интересующем нас множестве, можно определить новую функцию h (x ) = f (x )/g (x ). Для такой функции тоже можно найти производную:

Неслабо, да? Откуда взялся минус? Почему g 2 ? А вот так! Это одна из самых сложных формул — без бутылки не разберешься. Поэтому лучше изучать ее на конкретных примерах.

Задача. Найти производные функций:

В числителе и знаменателе каждой дроби стоят элементарные функции, поэтому все, что нам нужно — это формула производной частного:


По традиции, разложим числитель на множители — это значительно упростит ответ:

Сложная функция — это не обязательно формула длиной в полкилометра. Например, достаточно взять функцию f (x ) = sin x и заменить переменную x , скажем, на x 2 + ln x . Получится f (x ) = sin (x 2 + ln x ) — это и есть сложная функция. У нее тоже есть производная, однако найти ее по правилам, рассмотренным выше, не получится.

Как быть? В таких случаях помогает замена переменной и формула производной сложной функции:

f ’(x ) = f ’(t ) · t ’, если x заменяется на t (x ).

Как правило, с пониманием этой формулы дело обстоит еще более печально, чем с производной частного. Поэтому ее тоже лучше объяснить на конкретных примерах, с подробным описанием каждого шага.

Задача. Найти производные функций: f (x ) = e 2x + 3 ; g (x ) = sin (x 2 + ln x )

Заметим, что если в функции f (x ) вместо выражения 2x + 3 будет просто x , то получится элементарная функция f (x ) = e x . Поэтому делаем замену: пусть 2x + 3 = t , f (x ) = f (t ) = e t . Ищем производную сложной функции по формуле:

f ’(x ) = f ’(t ) · t ’ = (e t )’ · t ’ = e t · t

А теперь — внимание! Выполняем обратную замену: t = 2x + 3. Получим:

f ’(x ) = e t · t ’ = e 2x + 3 · (2x + 3)’ = e 2x + 3 · 2 = 2 · e 2x + 3

Теперь разберемся с функцией g (x ). Очевидно, надо заменить x 2 + ln x = t . Имеем:

g ’(x ) = g ’(t ) · t ’ = (sin t )’ · t ’ = cos t · t

Обратная замена: t = x 2 + ln x . Тогда:

g ’(x ) = cos (x 2 + ln x ) · (x 2 + ln x )’ = cos (x 2 + ln x ) · (2x + 1/x ).

Вот и все! Как видно из последнего выражения, вся задача свелась к вычислению производной суммы.

Ответ:
f ’(x ) = 2 · e 2x + 3 ;
g ’(x ) = (2x + 1/x ) · cos (x 2 + ln x ).

Очень часто на своих уроках вместо термина «производная» я использую слово «штрих». Например, штрих от суммы равен сумме штрихов. Так понятнее? Ну, вот и хорошо.

Таким образом, вычисление производной сводится к избавлению от этих самых штрихов по правилам, рассмотренным выше. В качестве последнего примера вернемся к производной степени с рациональным показателем:

(x n )’ = n · x n − 1

Немногие знают, что в роли n вполне может выступать дробное число. Например, корень — это x 0,5 . А что, если под корнем будет стоять что-нибудь навороченное? Снова получится сложная функция — такие конструкции любят давать на контрольных работах и экзаменах.

Задача. Найти производную функции:

Для начала перепишем корень в виде степени с рациональным показателем:

f (x ) = (x 2 + 8x − 7) 0,5 .

Теперь делаем замену: пусть x 2 + 8x − 7 = t . Находим производную по формуле:

f ’(x ) = f ’(t ) · t ’ = (t 0,5)’ · t ’ = 0,5 · t −0,5 · t ’.

Делаем обратную замену: t = x 2 + 8x − 7. Имеем:

f ’(x ) = 0,5 · (x 2 + 8x − 7) −0,5 · (x 2 + 8x − 7)’ = 0,5 · (2x + 8) · (x 2 + 8x − 7) −0,5 .

Наконец, возвращаемся к корням:

Понятие производной

Пусть функция f (x ) определена на некотором промежутке X. Придадим значению аргумента в точке x 0 Х произволь­ное приращение Δx так, чтобы точка x 0 + Δx также принад­лежала X. Тогда соответствующее приращение функции f(x) составит Δу = f (x 0 + Δx ) - f (x 0 ).

Определение 1. Производной функции f(x) в точке x 0 назы­вается предел отношения приращения функции в этой точке к приращению аргумента при Δx 0 (если этот предел сущест­вует).

Для обозначения производной функции употребимы симво­лы у" (x 0 ) или f "(x 0 ):

Если в некоторой точке x 0 предел (4.1) бесконечен:

то говорят, что в точке x 0 функция f (x ) имеет бесконечную производную.

Если функция f (x ) имеет производную в каждой точке мно­жества X, то производная f"(x) также является функцией от аргумента х, определенной на X.

Геометрический смысл производной

Для выяснения геометрического смысла производной нам понадобится определение касательной к графику функции в данной точке.

Определение 2. Касательной к графику функции у = f (x ) в точке М называется предельное положение секущей MN, ког­да точка N стремится к точке М по кривой f (x ).

Пусть точка М на кривой f (x ) соответствует значению ар­гумента x 0 , а точка N - значению аргумента x 0 + Δx (рис. 4.1). Из определения касательной следует, что для ее существования в точке x 0 необходимо, чтобы существовал предел , который равен углу наклона касательной к оси Оx . Из треугольника MNA следует, что

Если производная функции f (x ) в точке x 0 существует, то, согласно (4.1), получаем

Отсюда следует наглядный вывод о том, что производная f "(x 0 ) равна угловому коэффициенту (тангенсу угла наклона к положительному направлению оси Ох) касательной кграфику функции у = f (x ) в точке М (x 0 , f (x 0 )). При этомуголнаклона касательной определяется из формулы (4.2):

Физический смысл производной

Предположим, что функция l = f (t ) описывает закон дви­жения материальной точки по прямой как зависимость пути l от времени t. Тогда разность Δl = f(t + Δt) - f(t) - это путь, пройденный за интервал времени Δt , а отношение Δl t - средняя скорость за время Δt . Тогда предел определяет мгновенную скорость точки в момент вре­мени t как производную пути по времени.

В определенном смысле производную функции у = f(x) можно также трактовать как скорость изменения функции: чем больше величина f "(x ), тем больше угол наклона касательной к кривой, тем круче график f (x ) и быстрее растет функция.



Правая и левая производные

По аналогии с понятиями односторонних пределов функ­ции вводятся понятия правой и левой производных функции в точке.

Определение 3. Правой (левой) производной функции у = f(x) в точке x 0 называется правый (левый) предел отноше­ния (4.1) при Δx 0, если этот предел существует.

Для обозначения односторонних производных используется следующая символика:

Если функция f (x ) имеет в точке x 0 производную, то она имеет левую и правую производные в этой точке, которые сов­падают.

Приведем пример функции, у которой существуют одно­сторонние производные в точке, не равные друг другу. Это f (x ) = |x |. Действительно, в точке х = 0 имеем f’ + (0) = 1, f" - (0) = -1 (рис. 4.2) и f’ + (0) ≠ f’ - (0), т.е. функция не имеет производной при х = 0.

Операцию нахождения производной функции называют ее дифференцированием; функция, имеющая производную в точ­ке, называется дифференцируемой.

Связь между дифференцируемостью и непрерывностью функции в точке устанавливает следующая теорема.

ТЕОРЕМА 1. Если функция дифференцируема в точке x 0 , то она и непрерывна в этой точке.

Обратное утверждение неверно: функция f (x ), непрерыв­ная в точке, может не иметь производную в этой точке. Таким примером является функция у = |x |; она непрерывна в точке x = 0, но не имеет производной в этой точке.

Таким образом, требование дифференцируемости функции является более сильным, чем требование непрерывности, по­скольку из первого автоматически вытекает второе.

Уравнение касательной к графику функции в данной точке

Как было указано в разделе 3.9, уравнение прямой, про­ходящей через точку М (x 0 , у 0 ) с угловым коэффициентом k имеет вид

Пусть задана функция у = f (x ). Тогда посколькуее произ­водная в некоторой точке М (x 0 , у 0 ) является угловым коэффи­циентом касательной к графику этой функции в точке М, то отсюда следует, что уравнение касательной к графику функ­ции f (x ) в этой точке имеет вид