Космический лифт: фантазии или реальность? Исследовательская работа "космический лифт" Влияние космического лифта на экологию.

Идея создания космического лифта упоминалась в научно-фантастических произведениях британского писателя Артура Чарльза Кларка еще в 1979 году. Он писал в своих романах, что абсолютно уверен в том, что однажды такой лифт будет построен.

Но первым человеком, кому пришла в голову такая странная идея, был русский инженер и основоположник российской космонавтики Константин Эдуардович Циолковский. Вдохновленный постройкой Эйфелевой башни, он предложил построить еще более высокую башню несколько тысяч километров в высоту. Циолковский предлагал заселить космическое пространство с использованием орбитальных станций, выдвинул идеи космического лифта и поездов на воздушной подушке.


Космический лифт – это звучит фантастично. Но люди в ХIХ веке также не смогли бы поверить в появление таких технических достижений, как самолет или космический корабль. Строительная корпорация «Обаяси» в Японии уже занимается разработкой технической документации для подготовки строительства космического лифта. Стоимость проекта составляет 12 млрд долларов. Строительство объекта будет завершено в 2050 году.


Потенциальная польза от применения космических лифтов достаточно высока. Все дело в том, что преодоление земного притяжения с помощью реактивной тяги нецелесообразно. Например, чтобы запустить «Шаттл» всего один раз, требуется потратить 500 млн долларов, поэтому запуски традиционных ракет-носителей станут экономически невыгодными.


Космический лифт состоит из трех основных частей: основание, трос и противовес.

Массивная платформа в океане, представляющая основание лифта, будет удерживать один конец троса из углеродистого волокна, на конце которого расположится противовес – тяжелый объект, который будет играть роль спутника, вращающегося вслед за нашей планетой и удерживаемый на орбите за счет центробежной силы. Именно по этому тросу, протянутому в небо на высоту до ста тысяч километров, и будут подниматься в космос грузы.

Чтобы доставить килограмм груза в космос с помощью ракеты, уходит до 15 тысяч долларов. Японцы подсчитали, что для доставки на орбиту груза с таким же весом они потратят… 100 долларов


Космический лифт – это тщательно проработанная идея. Например, подсчитано, что трос нельзя делать из стали. Он просто порвется под тяжестью своего веса. Материал должен быть в 90 раз прочнее и в 10 раз легче стали.

В качестве тросов инженеры собирались использовать углеродные нанотрубки, но выяснилось, что из такого материала невозможно сплести тросы большой длины.

Совсем недавно появилось изобретение, которое может, наконец, сделать фантазии о космическом лифте реальностью. Команда исследователей во главе с Джоном Баддингом из университета Пенсильвании создала ультратонкие нанонити из микроскопических алмазов, которые по прочности существенно превосходят нанотрубки и полимерные волокна.


Токийское небесное дерево — телевизионная башня в районе Сумида, самая высокая среди телебашен мира.

Руководитель научно-исследовательского подразделения компании «Обаяси» Йоджи Ишикава считает, что ноу-хау университета Пенсильвании действительно способно приблизить человечество к космосу. Он говорит, что новый материал, разумеется, должен пройти ряд испытаний на прочность, но, похоже, это именно то, что так долго искали он и его коллеги.


Компания «Обаяси» уже построила скоростные лифты для телевизионной башни высотой около 635 метров

НАСА сейчас также вплотную занимается секретной разработкой космолифта. В перспективе появится возможность доставки на орбиту частей гигантских межпланетных кораблей и их сборки в космосе. Такой проект можно реализовать только при помощи космолифта.

Но самое главное – государство, который первым построит космический лифт, на долгие столетия монополизирует сферу космических грузоперевозок.


Иллюстрация к научно – фантастическому роману Кима Стэнли Робинсона «Зеленый Марс» с изображением
космического лифта, установленного на Марсе.

(ГСО) за счёт центробежной силы . По тросу поднимается , несущий полезный груз . При подъёме груз будет ускоряться за счёт вращения Земли, что позволит на достаточно большой высоте отправлять его за пределы тяготения Земли.

От троса требуется чрезвычайно большая прочность на разрыв в сочетании с низкой плотностью. Углеродные нанотрубки по теоретическим расчётам представляются подходящим материалом. Если допустить пригодность их для изготовления троса, то создание космического лифта является решаемой инженерной задачей, хотя и требует использования передовых разработок и . Создание лифта оценивается в 7-12 млрд долларов США. НАСА уже финансирует соответствующие разработки американского Института научных исследований, включая разработку подъёмника, способного самостоятельно двигаться по тросу .

Конструкция

Есть несколько вариантов конструкции. Почти все они включают основание (базу), трос (кабель), подъёмники и противовес.

Основание

Основание космического лифта - это место на поверхности планеты, где прикреплён трос и начинается подъём груза. Оно может быть подвижным, размещённым на океанском судне.

Преимущество подвижного основания - возможность совершения маневров для уклонения от ураганов и бурь. Преимущества стационарной базы - более дешёвые и доступные источники энергии, и возможность уменьшить длину троса. Разница в несколько километров троса сравнительно невелика, но может помочь уменьшить требуемую толщину его средней части и длину части, выходящей за геостационарную орбиту.

Трос

Трос должен быть изготовлен из материала с чрезвычайно высоким отношением предела прочности к удельной плотности. Космический лифт будет экономически оправдан, если можно будет производить в промышленных масштабах за разумную цену трос плотности, сравнимой с графитом , и прочностью около 65-120 гигапаскалей .

Для сравнения, прочность большинства видов стали - около 1 ГПа, и даже у прочнейших её видов - не более 5 ГПа, причём сталь тяжела. У гораздо более лёгкого кевлара прочность в пределах 2,6-4,1 ГПа, а у кварцевого волокна - до 20 ГПа и выше. Теоретическая прочность алмазных волокон может быть немногим [на сколько? ] выше.

Технология плетения таких волокон ещё только зарождается.

По заявлениям некоторых учёных , даже углеродные нанотрубки никогда не будут достаточно прочны для изготовления троса космического лифта.

Эксперименты учёных из Технологического университета Сиднея позволили создать графеновую бумагу. Испытания образцов внушают оптимизм: плотность материала в пять-шесть раз ниже, чем у стали, при этом прочность на разрыв в десять раз выше, чем у углеродистой стали. При этом графен является хорошим проводником электрического тока, что позволяет использовать его для передачи мощности подъёмнику, в качестве контактной шины.

Утолщение троса

Космический лифт должен выдерживать по крайней мере свой вес, весьма немалый из-за длины троса. Утолщение с одной стороны повышает прочность троса, с другой - прибавляет его вес, а следовательно и требуемую прочность. Нагрузка на него будет различаться в разных местах: в одних случаях участок троса должен выдерживать вес сегментов, находящихся ниже, в других - выдерживать центробежную силу , удерживающую верхние части троса на орбите. Для удовлетворения этому условию и для достижения оптимальности троса в каждой его точке, толщина его будет непостоянной.

Можно показать, что с учётом гравитации Земли и центробежной силы (но не учитывая меньшее влияние Луны и Солнца), сечение троса в зависимости от высоты будет описываться следующей формулой:

Здесь - площадь сечения троса как функция расстояния от центра Земли.

В формуле используются следующие константы:

Это уравнение описывает трос, толщина которого сначала экспоненциально увеличивается, потом её рост замедляется на высоте нескольких земных радиусов, а потом она становится постоянной, достигнув в конце концов геостационарной орбиты. После этого толщина снова начинает уменьшаться.

Таким образом, отношение площадей сечений троса у основания и на ГСО (r = 42 164 км) есть:

Подставив сюда плотность и прочность стали и диаметр троса на уровне Земли в 1 см, мы получим диаметр на уровне ГСО в несколько сот километров, что означает, что сталь и прочие привычные нам материалы непригодны для строительства лифта.

Отсюда следует, что есть четыре способа добиться более разумной толщины троса на уровне ГСО:

Ещё способ - сделать основание лифта подвижным. Движение даже со скоростью 100 м / с уже даст выигрыш в круговой скорости на 20 % и сократит длину кабеля на 20-25 %, что облегчит его на 50 и более процентов. Если же «заякорить» кабель на сверхзвуковом самолёте, или поезде, то выигрыш в массе кабеля уже будет измеряться не процентами, а десятками раз (но не учтены потери на сопротивление воздуха).

Противовес

Противовес может быть создан двумя способами - путём привязки тяжёлого объекта (например, астероида , космического поселения или космического дока) за геостационарной орбитой или продолжения самого троса на значительное расстояние за геостационарную орбиту. Второй вариант пользуется большей популярностью в последнее время, поскольку его легче осуществить, а кроме того, с конца удлинённого троса проще запускать грузы на другие планеты, поскольку он обладает значительной скоростью относительно Земли.

Угловой момент, скорость и наклон

Горизонтальная скорость каждого участка троса растёт с высотой пропорционально расстоянию до центра Земли, достигая на геостационарной орбите первой космической скорости . Поэтому при подъёме груза ему нужно получить дополнительный угловой момент (горизонтальную скорость).

Угловой момент приобретается за счёт вращения Земли. Сначала подъёмник движется чуть медленнее троса (эффект Кориолиса), тем самым «замедляя» трос и слегка отклоняя его к западу. При скорости подъёма 200 км/ч трос будет наклоняться на 1 градус. Горизонтальная компонента натяжения в невертикальном тросе тянет груз в сторону, ускоряя его в восточном направлении (см. диаграмму) - за счёт этого лифт приобретает дополнительную скорость. По третьему закону Ньютона трос замедляет Землю на небольшую величину.

В то же время влияние центробежной силы заставляет трос вернуться в энергетически выгодное вертикальное положение, так что он будет находиться в состоянии устойчивого равновесия. Если центр тяжести лифта будет всегда выше геостационарной орбиты независимо от скорости подъёмников, он не упадёт.

К моменту достижения грузом ГСО его угловой момент (горизонтальная скорость) достаточна для вывода груза на орбиту.

При спуске груза будет происходить обратный процесс, наклоняя трос на восток.

Запуск в космос

На конце троса высотой в 144 000 км тангенциальная составляющая скорости составит 10,93 км/с, что более чем достаточно, чтобы покинуть гравитационное поле Земли и запустить корабли к Сатурну . Если объекту позволить свободно скользить по верхней части троса, его скорости хватит, чтобы покинуть Солнечную систему . Это произойдёт за счёт перехода суммарного углового момента троса (и Земли) в скорость запущенного объекта.

Для достижения ещё больших скоростей можно удлинить трос или ускорить груз за счёт электромагнетизма.

Строительство

Строительство ведётся с геостационарной станции. Это единственное место, где может причалить космический аппарат. Один конец опускается к поверхности Земли, натягиваясь силой притяжения. Другой, для уравновешивания, - в противоположную сторону, натягиваясь центробежной силой. Это означает, что все материалы для строительства должны быть подняты на геостационарную орбиту традиционным способом, независимо от места назначения груза. То есть, стоимость подъёма всего космического лифта на геостационарную орбиту - минимальная цена проекта.

Экономия от использования космического лифта

Предположительно, космический лифт позволит намного снизить затраты на посылку грузов в космос. Строительство космических лифтов обойдётся дорого, но их операционные расходы невелики, поэтому их разумнее всего использовать в течение длительного времени для очень больших объёмов груза. В настоящее время рынок запуска грузов может быть недостаточно велик, чтобы оправдать строительство лифта, но резкое уменьшение цены должно привести к большему разнообразию грузов. Таким же образом оправдывает себя прочая транспортная инфраструктура - шоссе и железные дороги.

Пока ещё нет ответа на вопрос, вернёт ли космический лифт вложенные в него деньги или лучше будет вложить их в дальнейшее развитие ракетной техники.

Не следует забывать о лимите количества спутников-ретрансляторов на геостационарной орбите: в настоящее время международными соглашениями допускается 360 спутников - один ретранслятор на угловой градус, во избежание помех при трансляции в полосе K u -частот. Для C-частот число спутников ограничено 180.

Данное обстоятельство объясняет настоящую коммерческую несостоятельность проекта, так как основные финансовые затраты негосударственных организаций ориентированы на спутники-ретрансляторы, занимающие либо геостационарную орбиту (телевидение, связь), либо более низкие орбиты (системы глобального позиционирования, наблюдения за природными ресурсами и т. п.).

Однако лифт может быть гибридным проектом и помимо функции доставки груза на орбиту оставаться базой для других научно-исследовательских и коммерческих программ, не связанных с транспортом.

Достижения

В США с 2005 года проводятся ежегодные соревнования Space Elevator Games, организованные фондом Spaceward при поддержке NASA . В этих состязаниях существуют две номинации: «лучший трос» и «лучший робот (подъёмник)».

В конкурсе подъёмников робот должен преодолеть установленное расстояние, поднимаясь по вертикальному тросу со скоростью не ниже установленной правилами (в соревнованиях 2007 года нормативы были следующими: длина троса - 100 м, минимальная скорость - 2 м/с). Лучший результат 2007 года - преодолённое расстояние в 100 м со средней скоростью 1,8 м/с.

Общий призовой фонд соревнований Space Elevator Games в 2009 году составлял 4 миллиона долларов.

В конкурсе на прочность троса участникам необходимо предоставить двухметровое кольцо из сверхпрочного материала массой не более 2 грамм, которое специальная установка проверяет на разрыв. Для победы в конкурсе прочность троса должна минимум на 50 % превосходить по этому показателю образец, уже имеющийся в распоряжении у NASA. Пока лучший результат принадлежит тросу, выдержавшему нагрузку вплоть до 0,72 тонны.

В этих соревнованиях не принимает участие компания Liftport Group, получившая известность благодаря своим заявлениям запустить космический лифт в 2018 году (позднее этот срок был перенесён на 2031 год). Liftport проводит собственные эксперименты, так в 2006 году роботизированный подъёмник взбирался по прочному канату, натянутому с помощью воздушных шаров. Из полутора километров подъёмнику удалось пройти путь лишь в 460 метров. В августе-сентябре 2012 г компания запустила проект по сбору средств на новые эксперименты с подъемником на сайте Kickstarter . В зависимости от собранной суммы планируется подъем робота на 2 или более километров .

На соревнованиях Space Elevator Games с 4 по 6 ноября 2009 года прошло состязание, организованное Spaceward Foundation и NASA, в Южной Калифорнии, на территории центра Драйдена (Dryden Flight Research Center), в границах знаменитой авиабазы Эдвардс . Зачётная длина троса составила 900 метров, трос был поднят при помощи вертолёта. Лидерство заняла компания LaserMotive представившая подъёмник со скоростью 3,95 м/с, что очень близко к требуемой скорости. Всю длину троса лифт преодолел за 3 минуты 49 секунд, на себе лифт нес полезную нагрузку 0,4 кг. .

Схожие проекты

Космический лифт является не единственным из проектов, который использует тросы для вывода спутников на орбиту. Одним из таких проектов является Orbital Skyhook (орбитальный крюк). Skyhook использует не очень длинный, в сравнении с космическим лифтом, трос, который находится на околоземной орбите, и быстро вращается вокруг своей средней части. За счет этого один конец троса движется относительно Земли с относительно невысокой скоростью, и на него можно подвешивать грузы с гиперзвуковых самолётов. При этом конструкция Skyhook работает как гигантский маховик - накопитель вращательного момента и кинетический энергии. Достоинством проекта Skyhook является её реализуемость уже при существующих технологиях. Недостатком является то, что на запуск спутников Skyhook расходует энергию своего движения, и эту энергию будет необходимо как-то восполнять.

Космический лифт в различных произведениях

  • В фильме СССР 1972 года Петька в космосе главный герой изобретает космический лифт.
  • Одно из знаменитых произведений Артура Кларка , Фонтаны рая , основано на идее космического лифта. Кроме того, космический лифт фигурирует и в заключительной части его знаменитой тетралогии Космическая Одиссея (3001: Последняя одиссея).
  • В сериале «Звёздный путь: Вояджер » в эпизоде 3x19 «Rise» (Подъем) космический лифт помогает экипажу вырваться с планеты с опасной атмосферой.
  • В игре Civilization IV есть космический лифт. Там он - одно из поздних «Больших чудес».
  • В фантастическом романе Тимоти Зана «Шелкопряд» («Spinneret», 1985) упоминается планета способная производить суперволокно. Одна из рас заинтересовавшаяся планетой хотела получить это волокно именно для строительства космического лифта.
  • В фантастическом романе Франка Шетцинга «Limit» космический лифт действует как основное звено политической интриги в ближайшем будущем.
  • В дилогии Сергея Лукьяненко «Звёзды - холодные игрушки » одна из внеземных цивилизаций в процессе межзвёздной торговли поставила на Землю сверхпрочные нити, которые могли бы быть использованы для строительства космического лифта. Но внеземные цивилизации настаивали исключительно на использовании их по прямому назначению - для помощи при проведении родов.
  • В фантастическом романе Дж. Скальци «Обреченные на победу» (англ. Scalzi, John. Old Man’s War ) системы космических лифтов активно используются на Земле, многочисленных земных колониях и некоторых планетах других высокоразвитых разумных рас для сообщения с причалами межзвёздных кораблей.
  • В фантастическом романе Александра Громова «Завтра наступит вечность» сюжет построен вокруг факта существования космического лифта. Существует два устройства - источник и приемник, которые посредством «энергетического луча» способны поднимать «кабину» лифта на орбиту.
  • В фантастическом романе Аластера Рейнольдса «Город Бездны» дается подробное описание строения и функционирования космического лифта, описан процесс его разрушения (в результате теракта).
  • В фантастическом романе Терри Пратчетта «Страта» присутствует «Линия» - сверхдлинная искусственная молекула, используемая в качестве космического лифта.
  • Упоминается в песне группы Звуки Му «Лифт на небо».
  • В самом начале игры Sonic Colors, можно видеть, как Соник и Теилз поднимаются на космическом лифте, чтобы попасть в Парк Доктора Эггмана.
  • В книге Александра Зорича «Сомнамбула 2» из серии Этногенез , главный герой Матвей Гумилев (после подсадки суррогатной личности-Маским Верховцев, личный пилот товарища Альфы, главы «Звездных борцов») путешествует на орбитальном лифте.
  • В повести «Змееныш» писателя-фантаста Александра Громова герои пользуются космическим лифтом «по дороге» с Луны на землю.
  • В цикле фантастических романов Джорджа Мартина «Путешествия Тафа» на планете «С"атлем» орбитальный лифт ведет к планетоиду, обустроенному, как космопорт.

В манге и аниме

  • В третьем эпизоде аниме Кибер-город Эдо с помощью космического лифта можно было подняться на орбитальный криогенный банк.
  • В Battle Angel фигурирует циклопический космический лифт, на одном конце которого находится Небесный Город Салем (для граждан) вместе с нижним городом (для не-граждан), а на другом конце находится космический город Йеру. Аналогичная конструкция находится и на другой стороне Земли.
  • В аниме Mobile Suit Gundam 00 присутствуют три космических лифта, на них также крепится кольцо из солнечных батарей, что позволяет использовать космический лифт ещё и для добычи электроэнергии.
  • В аниме Z.O.E. Dolores присутствует космический лифт, а также показано что может быть в случае теракта.
  • Космический лифт упоминается в аниме-сериале Кровь Триединства , в нём противовесом служит космический корабль «Arc».

См. также

  • Космический лифт: 2010 (англ.) русск.

Примечания

Литература

  • Юрий Арцутанов «В космос - на электровозе», газета «Комсомольская правда » от 31 июля 1960 года.
  • Александр Болонкин «Non-Rocket Space Launch and Flight», Elsevier, 2006, 488 pgs.

В 21 веке лифты перестают быть просто механизмами, поднимающими грузы на определенную высоту. С увеличением скорости и грузоподъемности, лифты превращаются скорее в транспортные средства.

В пример можно предложить автомобильного гиганта из Японии, компанию Mitsubishi. Ее инженеры разработали лифт, способный подниматься на скорости в 60 км/ч. Но как вы сейчас убедитесь – и это не предел.

Безусловно, такие лифты предназначены для самых высоких зданий мира – небоскребов. И не имеет значения, в какой стране находится здание, главное, чтобы лифт работал. А каким еще образом можно поднять людей на высоту в 50 этажей? А в 100? Если скорость подъема останется прежней – то время будет течь невероятно медленно. Поэтому мощность лифтов увеличивается с каждым днем.

Лучшие в этом деле – японцы. Компания Obayashi Corporation, поразмыслив, объявила, что для нее небоскребы – далеко не предел. Инженеры компании создают лифт в космос. Время создания – около 40 лет. Скорее всего, к 2050-му году грандиозная постройка будет завершена.

Планируется сделать кабину в лифте максимально вместительной, дабы поднимать несколько десятков человек. Люди будут подниматься до того момента, пока не окажутся в космосе. Технологически это возможно. Ведь инженеры из Японии разработали специальный трос, сделанный из углеродных нанотрубок. Материал этот почти в два десятка раз крепче и прочнее, чем самая прочная в мире сталь, об этом можно посмотреть документальные фильмы онлайн. Причем лифт будет подниматься на скорости в 200 км/ч, что означает достижение высоты в 36 тыс. километров уже через неделю.

Сложно сказать, кто выделит деньги на подобный проект. Ведь разработки космического лифта ведутся уже долгие годы, начиная с теорий по этому поводу – в начале 20-го века.

Обычно столь амбициозные проекты берут в свои руки работники НАСА, однако у них сейчас, как и у США в целом, огромные проблемы в экономической сфере.

Потянут ли японцы такой мегапроект? Сможет ли он окупить себя и принести реальную прибыль? На эти вопросы мы ответить не сумеем. Однако сам факт, что японцы думают категориями в десятки лет вперед, в очередной раз напоминает нам о том, что планирование – это не самая сильная черта русского менталитета.

Пока в Японии так популяризируют науку – можно не опасаться за их технологический сектор, тесно связанный с маркетингом и экономикой, что в свою очередь питает науку.

Японцы построят лифт в космос к 2050 году

Это устройство будет способно доставлять людей и груз к космической станции, которая также появится в будущем

Японская компания Obayashi рассказала о своих планах построить лифт в космос к 2050 году. Японцы обещают, что он сможет подниматься на высоту 60 000 миль и доставлять людей и груз на космическую станцию, которая также появится в далеком будущем. Об этом сообщает ABC News.

Строители также гарантируют, что новый лифт будет безопаснее и дешевле космических шаттлов. В настоящее время отправка одного килограмма груза шаттлом стоит примерно 22 тысячи долларов. А научно-фантастическое устройство Obayashi сможет за эти же деньги перевезти до 200 килограммов.

Руководство строительной фирмы считает, что появление данной транспортной системы станет возможным с появлением углеродных наноматериалов. По словам одного из руководителей Obayashi Йожи Ишикавы, тросы лифта будет представлять собой футуристические нанотрубки, которые в сто раз прочнее тех, которые делаются из стали. Прямо сейчас мы не способны создавать длинные тросы. Мы пока можем делать 3-сантиметровые нанотрубки, но к 2030 году у нас все получится, сказал он, добавив, что лифт сможет всего за неделю доставлять до 30 человек к космической станции.

Obayashi полагает, что ее лифт произведет революцию в космических путешествиях. Компания привлекает к работе над этим проектом студентов со всех университетов Японии. Она также надеется на сотрудничество с иностранными учеными.

Японские лифты считаются одними из лучших в мире. Созданием самого скоростного лифта на Земле сейчас занимается также японская компания. Hitachi предоставит его одному из китайских небоскребов. Этот лифт будет способен развивать скорость до 72 километров в час и подниматься на высоту 440 метров, то есть до 95 этажа.

Лет пятьдесят назад люди считали, что к нашему времени космические полеты будут такими же доступными, как в их года поездки на общественном транспорте. К сожалению, эти надежды не сбылись. Но, возможно, уже в 2050-му году в космос можно будет добраться на лифте – концепт этого транспортного средства представила японская компания Obayashi Corporation.

Лифты бывают разные! Есть обычный лифт, есть лифт в ванной, есть лифт внутри аквариума, а компания Obayashi Corporation обещает через несколько десятилетий запустить лифт в космос! На самом деле, созданием подобных технологий занимается сразу несколько научных и инженерских групп по всему миру, курируемых космическим агентством NASA. Однако, по мнению японцев, процесс этот происходит очень медленно, поэтому в Obayashi Corporation решили заняться независимой от других разработкой космического лифта.

Главное достижение конкурсов от NASA заключается в том, что они доказали саму возможность создания космического лифта. Obayashi Corporation же обещает запустить это необычное транспортное средство уже к 2050-му году!

Этот лифт будет вести с Земли на космическую станцию, находящуюся на высоте 36 тысяч километров. А вот длина троса составит 96 тысяч километров. Нужно это для того, чтобы создать орбитальный противовес. В дальнейшем он может быть использован для продления маршрута лифта.

Новость Ученые готовы построить алмазный лифт в космос вы можете читать на ваших телефонах, iPad, iPhone и Android и других устройствах.

Ученые из Университета штата Пенсильвания обнаружили способ создания сверхтонких нанонитей из алмазов, которые идеально могли бы подойти для подъема космического лифта до Луны. Эксперты и ранее предполагали, что алмазные нанонити могут оказаться идеальным материалом для создания троса для лифта в космос.

Команда ученых, которой руководит профессор химии Джон Бэддинг, создавала для изолированных молекул бензола чередующиеся циклы давления в жидкой среде. Специалисты были поражены полученным результатом, когда атомы углерода собрались в упорядоченную и аккуратно построенную цепочку. Ученые создали нанонити в 20 тысяч раз меньше, чем человеческий волос. Однако именно алмазные цепочки могут являться самым прочным материалом на Земле.

Совсем недавно команда из Университета технологий Квинсленда в Австралии смоделировала макет алмазных нанонитей с помощью широкомасштабных молекулярно-динамических исследований. Физики пришли к выводу, что подобный материал в перспективе гораздо более гибкий, чем считалось ранее, если правильно подобрать молекулярную структуру.

Ученые предполагали, что удлинение алмазной нити может в итоге сделать получаемый материал весьма хрупким, но исследования доказали обратное. Поэтому нанонити из углерода имеют большие шансы для космического использования, в том числе и в качестве троса для лифта на Луну, концепция которого впервые была предложена еще в 1895 году.

Источники: spaceon.ru, www.bfm.ru, dlux.ru, news.ifresh.ws, mirkosmosa.ru

Путешественник во времени

Космический отель Наутилус

Европейский Союз. Сбывшееся пророчество

Подводные склады

Пирамида Пепи I


Область между Дашуром и основным комплексом пирамид Саккары принято называть Южной Саккарой. Здесь находятся две группы пирамид, одна из которых...

Преподобный Лаврентий Черниговский о конце времен и грядущем антихристе. Енох и Илия

Преподобный Лаврентий Черниговский предупреждал, что воцарению антихриста будет предшествовать всемирное голосование и перепись: “Будет время, когда будут ходить и...

Solar Walk - 3D модель Солнечной системы

Solar Walk - 3D Solar System model - это 3D-модель солнечной системы, которая позволяет Вам перемещаться в пространстве и...

Азовское море


Этому уникальному водоему с лечебной йодистой водой насчитывается миллион лет. Пожалуй, настало время ближе с ним познакомиться. Какие же тайны...


Замысел астроинженерного сооружения по выведению грузов на планетарную орбиту или даже за её пределы. Впервые подобную мысль высказал Константин Циолковский в 1895 году , детальную разработку идея получила в трудах Юрия Арцутанова. Гипотетическая конструкция основана на применении троса, протянутого от поверхности планеты к орбитальной станции находящейся на ГСО. Предположительно, такой способ в перспективе может быть на порядки дешевле использования ракет-носителей.
Трос удерживается одним концом на поверхности планеты (Земли), а другим - в неподвижной над планетой точке выше геостационарной орбиты (ГСО) за счёт центробежной силы. По тросу поднимается подъёмник, несущий полезный груз. При подъёме груз будет ускоряться за счёт вращения Земли, что позволит на достаточно большой высоте отправлять его за пределы тяготения Земли.
От троса требуется чрезвычайно большая прочность на разрыв в сочетании с низкой плотностью. Углеродные нанотрубки по теоретическим расчётам представляются подходящим материалом. Если допустить пригодность их для изготовления троса, то создание космического лифта является решаемой инженерной задачей, хотя и требует использования передовых разработок и больших затрат иного рода. Создание лифта оценивается в 7-12 млрд долларов США. НАСА уже финансирует соответствующие разработки американского Института научных исследований, включая разработку подъёмника, способного самостоятельно двигаться по тросу.
Содержание [убрать]
1 Конструкция
1.1 Основание
1.2 Трос
1.2.1 Утолщение троса
1.3 Подъёмник
1.4 Противовес
1.5 Угловой момент, скорость и наклон
1.6 Запуск в космос
2 Строительство
3 Экономика космического лифта
4 Достижения
5 Литература
6 Космический лифт в различных произведениях
7 См. также
8 Примечания
9 Ссылки
9.1 Организации
9.2 Разное
Конструкция

Есть несколько вариантов конструкции. Почти все они включают основание (базу), трос (кабель), подъёмники и противовес.
Основание
Основание космического лифта - это место на поверхности планеты, где прикреплён трос и начинается подъём груза. Оно может быть подвижным, размещённым на океанском судне.
Преимущество подвижного основания - возможность совершения маневров для уклонения от ураганов и бурь. Преимущества стационарной базы - более дешёвые и доступные источники энергии, и возможность уменьшить длину троса. Разница в несколько километров троса сравнительно невелика, но может помочь уменьшить требуемую толщину его средней части и длину части, выходящей за геостационарную орбиту.
Трос
Трос должен быть изготовлен из материала с чрезвычайно высоким отношением предела прочности к удельной плотности. Космический лифт будет экономически оправдан, если можно будет производить в промышленных масштабах за разумную цену трос плотности, сравнимой с графитом, и прочностью около 65–120 гигапаскалей.
Для сравнения, прочность большинства видов стали - около 1 ГПа, и даже у прочнейших её видов - не более 5 ГПа, причём сталь тяжела. У гораздо более лёгкого кевлара прочность в пределах 2,6-4,1 ГПа, а у кварцевого волокна - до 20 ГПа и выше. Теоретическая прочность алмазных волокон может быть немногим выше.
Углеродные нанотрубки должны, согласно теории, иметь растяжимость гораздо выше, чем требуется для космического лифта. Однако технология их получения в промышленных количествах и сплетения их в кабель только начинает разрабатываться. Теоретически их прочность должна быть более 120 ГПа, но на практике самая высокая растяжимость однослойной нанотрубки была 52 ГПа, а в среднем они ломались в диапазоне 30–50 ГПа. Самая прочная нить, сплетённая из нанотрубок, будет менее прочной, чем ее компоненты. Исследования по улучшению чистоты материала трубок и по созданию разных их видов продолжаются.
В большинстве проектов космического лифта применяются однослойные нанотрубки. У многослойных выше прочность, но они тяжелее, и их отношение прочности к плотности ниже. Возможный вариант - использовать соединение однослойных нанотрубок под высоким давлением. При этом хотя и теряется прочность из-за замещения sp²-связи (графит, нанотрубки) на sp³-связь (алмаз), они будут лучше удерживаться в одном волокне силами Ван-дер-Ваальса и дадут возможность производить волокна произвольной длины.[источник не указан 810 дней]

Дефекты кристаллической решётки снижают прочность нанотрубок
В эксперименте учёных из Университета Южной Калифорнии (США) однослойные углеродные нанотрубки продемонстрировали удельную прочность, в 117 раз превышающую показатели стали и в 30 - кевлар. Удалось выйти на показатель в 98,9 ГПа, максимальное значение длины нанотрубки составило 195 мкм.
Технология плетения таких волокон ещё только зарождается.
По заявлениям некоторых учёных, даже углеродные нанотрубки никогда не будут достаточно прочны для изготовления троса космического лифта.
Эксперименты ученых из Технологического университета Сиднея позволили создать графеновую бумагу. Испытания образцов внушают оптимизм: плотность материала в пять-шесть раз ниже, чем у стали, при этом прочность на разрыв в десять раз выше, чем у углеродистой стали. При этом графен является хорошим проводником электрического тока, что позволяет использовать его для передачи мощности подъемнику, в качестве контактной шины.
Утолщение троса

Проверить информацию.

Космический лифт должен выдерживать по крайней мере свой вес, весьма немалый из-за длины троса. Утолщение с одной стороны повышает прочность троса, с другой - прибавляет его вес, а следовательно и требуемую прочность. Нагрузка на него будет различаться в разных местах: в одних случаях участок троса должен выдерживать вес сегментов, находящихся ниже, в других - выдерживать центробежную силу, удерживающую верхние части троса на орбите. Для удовлетворения этому условию и для достижения оптимальности троса в каждой его точке, толщина его будет непостоянной.
Можно показать, что с учётом гравитации Земли и центробежной силы (но не учитывая меньшее влияние Луны и Солнца), сечение троса в зависимости от высоты будет описываться следующей формулой:

Здесь A ® - площадь сечения троса как функция расстояния r от центра Земли.
В формуле используются следующие константы:
A0 - площадь сечения троса на уровне поверхности Земли.
ρ - плотность материала троса.
s - предел прочности материала троса.
ω - круговая частота вращения Земли вокруг своей оси, 7,292×10−5 радиан в секунду.
r0 - расстояние между центром Земли и основанием троса. Оно приблизительно равно радиусу Земли, 6 378 км.
g0 - ускорение свободного падения у основания троса, 9,780 м/с².
Это уравнение описывает трос, толщина которого сначала экспоненциально увеличивается, потом её рост замедляется на высоте нескольких земных радиусов, а потом она становится постоянной, достигнув в конце концов геостационарной орбиты. После этого толщина снова начинает уменьшаться.
Таким образом, отношение площадей сечений троса у основания и на ГСО (r = 42 164 км) есть:
Подставив сюда плотность и прочность стали и диаметр троса на уровне Земли в 1 см, мы получим диаметр на уровне ГСО в несколько сот километров, что означает, что сталь и прочие привычные нам материалы непригодны для строительства лифта.
Отсюда следует, что есть четыре способа добиться более разумной толщины троса на уровне ГСО:
Использовать менее плотный материал. Поскольку плотность большинства твёрдых тел лежит в относительно небольшом диапазоне от 1000 до 5000 кг/м³, здесь вряд ли получится чего-то добиться.
Использовать более прочный материал. В этом направлении в основном и идут исследования. Углеродные нанотрубки в десятки раз прочнее лучшей стали, и они позволят значительно уменьшить толщину троса на уровне ГСО.
Поднять повыше основание троса. Из-за наличия экспоненты в уравнении даже небольшое поднятие основания позволит сильно понизить толщину троса. Предлагаются башни высотой до 100 км , которые, кроме экономии на тросе, позволят избежать влияния атмосферных процессов.
Сделать основание троса как можно тоньше. Он все равно должен быть достаточно толстым, чтобы выдержать подъёмник с грузом, так что минимальная толщина у основания также зависит от прочности материала. Тросу из углеродных нанотрубок достаточно иметь у основания толщину всего в один миллиметр.
Ещё способ - сделать основание лифта подвижным. Движение даже со скоростью 100 м/с уже даст выигрыш в круговой скорости на 20% и сократит длину кабеля на 20-25%, что облегчит его на 50 и более процентов. Если же «заякорить» кабель на сверхзвуковом[источник не указан 664 дня] самолёте, или поезде, то выигрыш в массе кабеля уже будет измеряться не процентами, а десятками раз (но не учтены потери на сопротивление воздуха).
Подъёмник

Проверить информацию.
Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.
На странице обсуждения должны быть пояснения.


Стиль этого раздела неэнциклопедичен или нарушает нормы русского языка.
Следует исправить раздел согласно стилистическим правилам Википедии.



Концептуальный рисунок космического лифта, поднимающегося через облака
Космический лифт не может работать как обычный лифт (с движущимися тросами), поскольку толщина его троса непостоянна. Большинство проектов предлагает использовать подъёмник, забирающийся вверх по неподвижному тросу, хотя предлагались также варианты использования небольших сегментированных подвижных тросов, протянутых вдоль основного троса.
Предлагаются различные способы конструкции подъёмников. На плоских тросах можно использовать пары роликов, держащихся за счёт силы трения. Другие варианты - движущиеся спицы с крючками на пластинах, ролики с выдвижными крючками, магнитная левитация (маловероятна, поскольку на тросе придётся закреплять громоздкие пути) и пр.[источник не указан 661 день]
Серьёзная проблема конструкции подъёмника - источник энергии[источник не указан 661 день]. Плотность хранения энергии вряд ли когда-либо будет достаточно велика, чтобы подъёмнику хватило энергии на подъем по всему кабелю. Возможные внешние источники энергии - лазерные или микроволновые лучи. Другие варианты - использование энергии торможения подъёмников, движущихся вниз; разница в температурах тропосферы; ионосферный разряд и т.д. Основной вариант[источник не указан 661 день] (лучи энергии) обладает серьёзными проблемами, связанными с эффективностью и диссипацией тепла на обоих концах, хотя, если оптимистично относиться к будущим технологическим достижениям, он реализуем.
Подъёмники должны следовать на оптимальной дистанции друг за другом, чтобы минимизировать нагрузку на трос и его осцилляции и максимизировать пропускную способность. Самая ненадёжная область троса - вблизи его основания; там не должно находиться более одного подъёмника[источник не указан 661 день]. Подъёмники, движущиеся только вверх, позволят увеличить пропускную способность, но не дадут использовать энергию торможения при движении вниз, а также не смогут возвращать людей на землю. Кроме того, компоненты таких подъёмников должны использоваться на орбите для других целей. В любом случае, маленькие подъёмники лучше больших, потому что расписание их движения будет более гибким, но они накладывают больше технологических ограничений.
Кроме того, сама нить лифта будет постоянно испытывать на себе действие как силы Кориолиса, так и атмосферных потоков. Мало того, поскольку «подъёмник» должен быть расположен выше высоты геостационарной орбиты, он будет подвержен постоянным нагрузкам, в том числе пиковым, например, рывковым[источник не указан 579 дней].
Тем не менее, если вышеизложенные препятствия могут быть каким-либо образом устранены, то космический лифт может быть реализован. Однако такой проект будет крайне дорогостоящим, но в будущем, возможно, будет конкурировать с одноразовыми и многоразовыми космическим аппаратами[источник не указан 579 дней].
Противовес

В этой статье не хватает ссылок на источники информации.
Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка стоит на статье с 13 мая 2011.
Противовес может быть создан двумя способами - путём привязки тяжёлого объекта (например, астероида) за геостационарной орбитой или продолжения самого троса на значительное расстояние за геостационарную орбиту. Второй вариант пользуется большей популярностью в последнее время, поскольку его легче осуществить, а кроме того, с конца удлинённого троса проще запускать грузы на другие планеты, поскольку он обладает значительной скоростью относительно Земли.
Угловой момент, скорость и наклон

Проверить информацию.
Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.
На странице обсуждения должны быть пояснения.

Эта статья или раздел нуждается в переработке.
Пожалуйста, улучшите статью в соответствии с правилами написания статей.

В этой статье не хватает ссылок на источники информации.
Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка стоит на статье с 13 мая 2011.

При движении подъёмника вверх лифт наклоняется на 1 градус, поскольку верхняя часть лифта движется вокруг Земли быстрее, чем нижняя (эффект Кориолиса). Масштаб не сохранен
Горизонтальная скорость каждого участка троса растет с высотой пропорционально расстоянию до центра Земли, достигая на геостационарной орбите первой космической скорости. Поэтому при подъёме груза ему нужно получить дополнительный угловой момент (горизонтальную скорость).
Угловой момент приобретается за счёт вращения Земли. Сначала подъёмник движется чуть медленнее троса (эффект Кориолиса), тем самым «замедляя» трос и слегка отклоняя его к западу. При скорости подъёма 200 км/ч трос будет наклоняться на 1 градус. Горизонтальная компонента натяжения в невертикальном тросе тянет груз в сторону, ускоряя его в восточном направлении (см. диаграмму) - за счёт этого лифт приобретает дополнительную скорость. По третьему закону Ньютона трос замедляет Землю на небольшую величину.
В то же время влияние центробежной силы заставляет трос вернуться в энергетически выгодное вертикальное положение, так что он будет находиться в состоянии устойчивого равновесия. Если центр тяжести лифта будет всегда выше геостационарной орбиты независимо от скорости подъёмников, он не упадет.
К моменту достижения грузом ГСО его угловой момент (горизонтальная скорость) достаточна для вывода груза на орбиту.
При спуске груза будет происходить обратный процесс, наклоняя трос на восток.
Запуск в космос
На конце троса высотой в 144 000 км тангенциальная составляющая скорости составит 10,93 км/с, что более чем достаточно, чтобы покинуть гравитационное поле Земли и запустить корабли к Сатурну. Если объекту позволить свободно скользить по верхней части троса, его скорости хватит, чтобы покинуть Солнечную систему. Это произойдет за счёт перехода суммарного углового момента троса (и Земли) в скорость запущенного объекта.
Для достижения ещё больших скоростей можно удлинить трос или ускорить груз за счёт электромагнетизма.
Строительство

Строительство ведётся с геостационарной станции. Это единственное место, где может причалить космический аппарат. Один конец опускается к поверхности Земли,натягиваясь силой притяжения. Другой, для уравновешивания,- в противоположную сторону, натягиваясь центробежной силой. Это означает, что все материалы для строительства должны быть подняты на геостационарную орбиту традиционным способом, независимо от места назначения груза. То есть, стоимость подъёма всего космического лифта на геостационарную орбиту - минимальная цена проекта.
Экономика космического лифта

Предположительно, космический лифт позволит намного снизить затраты на посылку грузов в космос. Строительство космических лифтов обойдётся дорого, но их операционные расходы невелики, поэтому их разумнее всего использовать в течение длительного времени для очень больших объёмов груза. В настоящее время рынок запуска грузов может быть недостаточно велик, чтобы оправдать строительство лифта, но резкое уменьшение цены должно привести к большему разнообразию грузов. Таким же образом оправдывает себя прочая транспортная инфраструктура - шоссе и железные дороги.
Стоимость разработки лифта сравнима со стоимостью разработки космического челнока[источник не указан 810 дней]. Пока ещё нет ответа на вопрос, вернет ли космический лифт вложенные в него деньги или лучше будет вложить их в дальнейшее развитие ракетной техники.
Не следует забывать о лимите количества спутников-ретрансляторов на геостационарной орбите: в настоящее время международными соглашениями допускается 360 спутников - один ретранслятор на угловой градус, во избежание помех при трансляции в полосе Ku-частот. Для C-частот число спутников ограничено 180.
Таким образом, космический лифт минимально пригоден для массовых запусков на геостационарную орбиту[источник не указан 554 дня] и максимально пригоден для освоения внешнего космоса и Луны в частности.
Данное обстоятельство объясняет настоящую коммерческую несостоятельность проекта, так как основные финансовые затраты негосударственных организаций ориентированы на спутники-ретрансляторы, занимающие либо геостационарную орбиту (телевидение, связь), либо более низкие орбиты (системы глобального позиционирования, наблюдения за природными ресурсами и т.п.).
Однако лифт может быть гибридным проектом и помимо функции доставки груза на орбиту оставаться базой для других научно-исследовательских и коммерческих программ, не связанных с транспортом.
Достижения

В США с 2005 года проводятся ежегодные соревнования Space Elevator Games, организованные фондом Spaceward при поддержке NASA. В этих состязаниях существуют две номинации: «лучший трос» и «лучший робот (подъёмник)».
В конкурсе подъёмников робот должен преодолеть установленное расстояние, поднимаясь по вертикальному тросу со скоростью не ниже установленной правилами (в соревнованиях 2007 года нормативы были следующими: длина троса - 100 м, минимальная скорость - 2 м/с). Лучший результат 2007 года - преодолённое расстояние в 100 м со средней скоростью 1,8 м/с.
Общий призовой фонд соревнований Space Elevator Games в 2009 году составлял 4 миллиона долларов.
В конкурсе на прочность троса участникам необходимо предоставить двухметровое кольцо из сверхпрочного материала массой не более 2 грамм, которое специальная установка проверяет на разрыв. Для победы в конкурсе прочность троса должна минимум на 50% превосходить по этому показателю образец, уже имеющийся в распоряжении у NASA. Пока лучший результат принадлежит тросу, выдержавшему нагрузку вплоть до 0,72 тонны.
В этих соревнованиях не принимает участие компания Liftport Group, получившая известность благодаря своим заявлениям запустить космический лифт в 2018 году (позднее этот срок был перенесён на 2031 год). Liftport проводит собственные эксперименты, так в 2006 году роботизированный подъёмник взбирался по прочному канату, натянутому с помощью воздушных шаров. Из полутора километров подъёмнику удалось пройти путь лишь в 460 метров. Следующим этапом компания планирует провести испытания на тросе высотой 3 км.
На соревнованиях Space Elevator Games с 4 по 6 ноября 2009 года прошло состязание, организованное Spaceward Foundation и NASA, в Южной Калифорнии, на территории центра Драйдена (Dryden Flight Research Center), в границах знаменитой авиабазы Эдвардс. Зачётная длина троса составила 900 метров, трос был поднят при помощи вертолета. Лидерство заняла компания LaserMotive представившая подъемник со скоростью 3,95 м/с, что очень близко к требуемой скорости. Всю длину троса лифт преодолел за 3 минуты 49 секунд, на себе лифт нес полезную нагрузку 0,4кг..
В августе 2010 года компания LaserMotive провела демонстрацию своего последнего изобретения на AUVSI Unmanned Systems Conference в Денвере, штат Колорадо. Новый вид лазера поможет более экономично передавать энергию на большие расстояния, лазер потребляет всего несколько ватт.
Литература

Юрий Арцутанов «В космос - на электровозе», газета «Комсомольская правда» от 31 июля 1960 года.
Александр Болонкин «Non-Rocket Space Launch and Flight», Elsevier, 2006, 488 pgs. http://www.scribd.com/doc/24056182
Космический лифт в различных произведениях

Одно из знаменитых произведений Артура Кларка, Фонтаны рая, основано на идее космического лифта. Кроме того, космический лифт фигурирует и в заключительной части его знаменитой тетралогии Космическая Одиссея (3001: Последняя одиссея).
В Battle Angel фигурирует циклопический космический лифт, на одном конце которого находится Небесный Город Салем (для граждан) вместе с нижним городом (для не-граждан), а на другом конце находится космический город Йеру. Аналогичная конструкция находится и на другой стороне Земли.
В сериале «Звёздный путь: Вояджер» в эпизоде 3×19 «Rise» (Подъем) космический лифт помогает экипажу вырваться с планеты с опасной атмосферой.
В игре Civilization IV есть космический лифт. Там он - одно из поздних «Больших чудес».
В фантастическом романе Тимоти Зана «Шелкопряд» («Spinneret», 1985) упоминается планета способная производить супер волокно. Одна из рас заинтересовавшаяся планетой хотела получить это волокно именно для строительства космического лифта.
В дилогии Сергея Лукьяненко «Звёзды - холодные игрушки» одна из внеземных цивилизаций в процессе межзвёздной торговли поставила на Землю сверхпрочные нити, которые могли бы быть использованы для строительства космического лифта. Но внеземные цивилизации настаивали исключительно на использовании их по прямому назначению - для помощи при проведении родов.
В аниме Mobile Suit Gundam 00 присутствуют три космических лифта, на них так же крепится кольцо из солнечных батарей, что позволяет использовать космический лифт ещё и для добычи электроэнергии.
В аниме Z.O.E. Dolores присутствует космический лифт, а также показано что может быть в случае теракта.
В фантастическом романе Дж. Скальци «Обреченные на победу» (англ. Scalzi, John. Old Man’s War) системы космических лифтов активно используются на Земле, многочисленных земных колониях и некоторых планетах других высокоразвитых разумных рас для сообщения с причалами межзвёздных кораблей.
В фантастическом романе Александра Громова «Завтра наступит вечность» сюжет построен вокруг факта существования космического лифта. Существует два устройства - источник и приемник, которые посредством «энергетического луча» способны поднимать «кабину» лифта на орбиту.
В фантастическом романе Аластера Рейнольдса «Город Бездны» дается подробное описание строения и функционирования космического лифта, описан процесс его разрушения (в результате теракта).
В фантастическом романе Терри Пратчетта «Страта» присутствует «Линия» - сверхдлинная искусственная молекула, используемая в качестве космического лифта.
Упоминается в песне группы Звуки Му «Лифт на небо»
Космический лифт упоминается в аниме-сериале Кровь Триединства, в нём противовесом служит космический корабль «Arc».
В самом начале игры Sonic Colors, можно видеть, как Соник и Теилз поднимаются на космическом лифте, чтобы попасть в Парк Доктора Эггмана
См. также

Космическая пушка
Пусковая петля
Космический фонтан
Примечания

http://galspace.spb.ru/nature.file/lift.html Космический лифт и нанотехнологии
В космос - на лифте! // KP.RU
Орбиты космического лифта Общественно-политический и научно-популярный журнал «Российский космос» № 11, 2008
Углеродные нанотрубки на два порядка прочнее стали
MEMBRANA | Мировые новости | Нанотрубки не выдержат космический лифт
Новая графеновая бумага оказалась прочнее стали
Лемешко Андрей Викторович. Космический лифт Лемешко А.В./ Space lift Lemeshko A.V
en:Satellite television#Technology
Лифт на небо поставил рекорды с прицелом на будущее
Разработан лазер, который сможет питать космические лифты
LaserMotive to Demonstrate Laser-Powered Helicopter at the AUVSI’s Unmanned Systems North America 2010

Идея космического лифта уже давно захватила сознание научных фантастов и стала предметом реальных технико-экономических исследований, проведенных НАСА и другими агентствами. Среди космических инженеров есть мнение, что это весьма привлекательная идея. Но огромные сложности, связанные с созданием космического лифта, недоступны с технологиями и материалами настоящего времени.

Однако двое исследователей – математик и инженер-механик из Университета Джона Хопкинса, находящегося в США, предполагают, что создание лифта в ближайшем будущем вполне возможно. Если его создатели будут использовать знания из биологии. И если они смогут построить для проекта автономные ремонтные боты.

«Мы предлагаем дизайн мегаструктуры, который не только позволить ее составным частям выходить из строя. Но и будет обладать механизмом самовосстановления для замены сломанных компонентов», – пишут они.

«Это позволит структурам работать при значительно более высоких нагрузках, не ставя под угрозу их целостность, что, в свою очередь, сделает реальностью мегаструктуры, созданные из существующих материалов».


Вам могут понравиться эти статьи: