Движение по наклонной плоскости формулы. Движение тела по наклонной плоскости с переходом на горизонтальную

В. М. Зражевский

ЛАБОРАТОРНАЯ РАБОТА №

СКАТЫВАНИЕ ТВЕРДОГО ТЕЛА С НАКЛОННОЙ ПЛОСКОСТИ

Цель работы: Проверка закона сохранения механической энергии при скатывании твердого тела с наклонной плоскости.

Оборудование: наклонная плоскость, электронный секундомер, цилиндры разной массы.

Теоретические сведения

Пусть цилиндр радиуса R и массой m скатывается с наклонной плоскости, образующей угол α с горизонтом (рис. 1). На цилиндр действуют три силы: сила тяжести P = mg , сила нормального давления плоскости на цилиндр N и сила трения цилиндра о плоскость F тр. , лежащая в этой плоскости.

Цилиндр участвует одновременно в двух видах движения: поступательном движении центра масс O и вращательном движении относительно оси, проходящей через центр масс.

Так как цилиндр во время движения остается на плоскости, то ускорение центра масс в направлении нормали к наклонной плоскости равно нулю, следовательно

P ∙cosα − N = 0. (1)

Уравнение динамики поступательного движения вдоль наклонной плоскости определяется силой трения F тр. и составляющей силы тяжести вдоль наклонной плоскости mg ∙sinα:

ma = mg ∙sinα − F тр. , (2)

где a – ускорение центра тяжести цилиндра вдоль наклонной плоскости.

Уравнение динамики вращательного движения относительно оси, проходящей через центр масс имеет вид

I ε = F тр. R , (3)

где I – момент инерции, ε – угловое ускорение. Момент силы тяжести и относительно этой оси равен нулю.

Уравнения (2) и (3) справедливы всегда, вне зависимости от того, движется цилиндр по плоскости со скольжением или без скольжения. Но из этих уравнений нельзя определить три неизвестные величины: F тр. , a и ε, необходимо еще одно дополнительное условие.

Если сила трения имеет достаточную величину, то качение цилиндра по наклонной происходит без скольжения. Тогда точки на окружности цилиндра должны проходить ту же длину пути, что и центр масс цилиндра. В этом случае линейное ускорение a и угловое ускорение ε связаны соотношением

a = R ε. (4)

Из уравнения (4) ε = a /R . После подстановки в (3) получаем

. (5)

Заменив в (2) F тр. на (5), получаем

. (6)

Из последнего соотношения определяем линейное ускорение

. (7)

Из уравнений (5) и (7) можно вычислить силу трения:

. (8)

Сила трения зависит от угла наклона α, силы тяжести P = mg и от отношения I /mR 2 . Без силы трения качения не будет.

При качении без скольжения играет роль сила трения покоя. Сила трения при качении, как и сила трения покоя, имеет максимальное значение, равное μN . Тогда условия для качения без скольжения будут выполняться в том случае, если

F тр. ≤ μN . (9)

Учитывая (1) и (8), получим

, (10)

или, окончательно

. (11)

В общем случае момент инерции однородных симметричных тел вращения относительно оси, проходящей через центр масс, можно записать как

I = kmR 2 , (12)

где k = 0,5 для сплошного цилиндра (диска); k = 1 для полого тонкостенного цилиндра (обруча); k = 0,4 для сплошного шара.

После подстановки (12) в (11) получаем окончательный критерий скатывания твердого тела с наклонной плоскости без проскальзывания:

. (13)

Поскольку при качении твердого тела по твердой поверхности сила трения качения мала, то полная механическая энергия скатывающегося тела постоянна. В начальный момент времени, когда тело находится в верхней точке наклонной плоскости на высоте h , его полная механическая энергия равна потенциальной:

W п = mgh = mgs ∙sinα, (14)

где s – путь, пройденный центром масс.

Кинетическая энергия катящегося тела складывается из кинетической энергии поступательного движения центра масс со скоростью υ и вращательного движения со скоростью ω относительно оси, проходящей через центр масс:

. (15)

При качении без скольжения линейная и угловая скорости связаны соотношением

υ = R ω. (16)

Преобразуем выражение для кинетической энергии (15), подставив в него (16) и (12):

Движение по наклонной плоскости является равноускоренным:

. (18)

Преобразуем (18) с учетом (4):

. (19)

Решая совместно (17) и (19), получим окончательное выражение для кинетической энергии тела, катящегося по наклонной плоскости:

. (20)

Описание установки и метода измерений

Исследовать качение тела по наклонной плоскости можно с помощью узла «плоскость» и электронного секундомера СЭ1, входящих в состав модульного учебного комплекса МУК-М2.

У
становка представляет собой наклонную плоскость 1, которую с помощью винта 2 можно устанавливать под разными углами α к горизонту (рис. 2). Угол α измеряется с помощью шкалы 3. На плоскость может быть помещен цилиндр 4 массой m . Предусмотрено использование двух роликов разной массы. Ролики закрепляются в верхней точке наклонной плоскости с помощью электромагнита 5, управление которым осуществляется с помощью

электронного секундомера СЭ1. Пройденное цилиндром расстояние измеряется линейкой 6, закрепленной вдоль плоскости. Время скатывания цилиндра измеряется автоматически с помощью датчика 7, выключающего секундомер в момент касания роликом финишной точки.

Порядок выполнения работы

1. Ослабив винт 2 (рис. 2), установите плоскость под некоторым углом α к горизонту. Поместите ролик 4 на наклонную плоскость.

2. Переключите тумблер управления электромагнитами механического блока в положение «плоскость».

3. Переведите секундомер СЭ1 в положение режим 1.

4. Нажмите кнопку «Пуск» секундомера. Измерьте время скатывания.

5. Повторите опыт пять раз. Результаты измерений запишите в табл. 1.

6. Вычислите значение механической энергии до, и после скатывания. Сделайте вывод.

7. Повторите п. 1-6 для других углов наклона плоскости.

Таблица 1

t i , c

(t i <t >) 2

пути s , м

Угол наклона

ролика, кг

W п, Дж

W к, Дж

t (a,n )

<t >

å(t i <t >) 2

Δs , м

Δm , кг

8. Повторите опыт п. 1-7 для второго ролика. Результаты запишите в табл. 2, аналогичную табл. 1.

9. Сделайте выводы по всем результатам работы.

Контрольные вопросы

1. Назовите виды сил в механике.

2. Объяснить физическую природу сил трения.

3. Что называется коэффициентом трения? Его размерность?

4. Какие факторы влияют на величину коэффициента трения покоя, скольжения, качения?

5. Описать общий характер движения твердого тела при качении.

6. Как направлен момент силы трения при качении по наклонной плоскости?

7. Записать систему уравнений динамики при качении цилиндра (шара) по наклонной плоскости.

8. Вывести формулу (13).

9. Вывести формулу (20).

10. Шар и цилиндр с одинаковыми массами m и равными радиусами R одновременно начинают скатываться по наклонной плоскости с высоты h . Одновременно ли они достигнут нижней точки (h = 0)?

11. Объяснить причину торможения катящегося тела.

Библиографический список

1. Савельев, И. В. Курс общей физики в 3­х т. Т. 1 / И. В. Савельев. – М.: Наука, 1989. – § 41–43.

2. Хайкин, С. Э. Физические основы механики / С. Э. Хайкин. – М: Наука, 1971. – § 97.

3. Трофимова Т. И. Курс физики / Т. И. Трофимова. – М: Высш. шк., 1990. – § 16–19.

Динамика и кинематика - это два важных раздела физики, которые изучают законы перемещения объектов в пространстве. Первый рассматривает действующие на тело силы, второй же занимается непосредственно характеристиками динамического процесса, не вникая в причины того, что его вызвало. Знание этих разделов физики необходимо применять для успешного решения задач на движение по наклонной плоскости. Рассмотрим этот вопрос в статье.

Основная формула динамики

Конечно же, речь идет о втором законе, который постулировал Исаак Ньютон в XVII веке, изучая механическое движение твердых тел. Запишем его в математической форме:

Действие внешней силы F¯ вызывает появление линейного ускорения a¯ у тела с массой m. Обе векторные величины (F¯ и a¯) направлены в одну и ту же сторону. Сила в формуле является результатом действия на тело всех сил, которые присутствуют в системе.

В случае движения вращения второй закон Ньютона записывается в виде:

Здесь M и I - и инерции, соответственно, α - угловое ускорение.

Формулы кинематики

Решение задач на движение по наклонной плоскости требует знания не только главной формулы динамики, но и соответствующих выражений кинематики. Они связывают в равенства ускорение, скорость и пройденный путь. Для равноускоренного (равнозамедленного) прямолинейного движения применяются следующие формулы:

S = v 0 *t ± a*t 2 /2

Здесь v 0 - значение начальной скорости тела, S - пройденный за время t путь вдоль прямолинейной траектории. Знак "+" следует поставить, если скорость тела увеличивается с течением времени. В противном случае (равнозамедленное движение) следует использовать в формулах знак "-". Это важный момент.

Если движение осуществляется по круговой траектории (вращение вокруг оси), тогда следует использовать такие формулы:

ω = ω 0 ± α*t;

θ = ω 0 *t ± α*t 2 /2

Здесь α и ω - и скорость, соответственно, θ - угол поворота вращающегося тела за время t.

Линейные и угловые характеристики друг с другом связаны формулами:

Здесь r - радиус вращения.

Движение по наклонной плоскости: силы

Под этим движением понимают перемещение некоторого объекта вдоль плоской поверхности, которая наклонена под определенным углом к горизонту. Примерами может служить соскальзывание бруска по доске или качение цилиндра по металлическому наклоненному листу.

Для определения характеристик рассматриваемого типа движения необходимо в первую очередь найти все силы, которые действуют на тело (брусок, цилиндр). Они могут быть разными. В общем случае это могут быть следующие силы:

  • тяжести;
  • реакции опоры;
  • и/или скольжения;
  • натяжение нити;
  • сила внешней тяги.

Первые три из них присутствуют всегда. Существование последних двух зависит от конкретной системы физических тел.

Чтобы решать задачи на перемещение по плоскости наклонной необходимо знать не только модули сил, но и их направления действия. В случае, если тело по плоскости скатывается, сила трения неизвестна. Однако она определяется из соответствующей системы уравнений движения.

Методика решения

Решения задач данного типа начинается с определения сил и их направлений действия. Для этого в первую очередь рассматривают силу тяжести. Ее следует разложить на два составляющих вектора. Один из них должен быть направлен вдоль поверхности наклонной плоскости, а второй должен быть ей перпендикулярен. Первая составляющая силы тяжести, в случае движения тела вниз, обеспечивает его линейное ускорение. Это происходит в любом случае. Вторая равна Все эти показатели могут иметь различные параметры.

Сила трения при движении по наклонной плоскости всегда направлена против перемещения тела. Если речь идет о скольжении, то вычисления довольно просты. Для этого следует использовать формулу:

Где N - реакция опоры, µ - коэффициент трения, не имеющий размерности.

Если в системе присутствуют только указанные три силы, тогда их результирующая вдоль наклонной плоскости будет равна:

F = m*g*sin(φ) - µ*m*g*cos(φ) = m*g*(sin(φ) - µ*cos(φ)) = m*a

Здесь φ - это угол наклона плоскости к горизонту.

Зная силу F, можно по закону Ньютона определить линейное ускорение a. Последнее, в свою очередь, используется для определения скорости движения по наклонной плоскости через известный промежуток времени и пройденного телом расстояния. Если вникнуть, то можно понять, что все не так уж и сложно.

В случае, когда тело скатывается по наклонной плоскости без проскальзывания, суммарная сила F будет равна:

F = m*g*sin(φ) - F r = m*a

Где F r - Она неизвестна. Когда тело катится, то сила тяжести не создает момента, поскольку приложена к оси вращения. В свою очередь, F r создает следующий момент:

Учитывая, что мы имеем два уравнения и две неизвестных (α и a связаны друг с другом), можно легко решить эту систему, а значит, и задачу.

Теперь рассмотрим, как использовать описанную методику при решении конкретных задач.

Задача на движение бруска по наклонной плоскости

Деревянный брусок находится в верхней части наклонной плоскости. Известно, что она имеет длину 1 метр и располагается под углом 45 o . Необходимо вычислить, за какое время брусок опустится по этой плоскости в результате скольжения. Коэффициент трения принять равным 0,4.

Записываем закон Ньютона для данной физической системы и вычисляем значение линейного ускорения:

m*g*(sin(φ) - µ*cos(φ)) = m*a =>

a = g*(sin(φ) - µ*cos(φ)) ≈ 4,162 м/с 2

Поскольку нам известно расстояние, которое должен пройти брусок, то можно записать следующую формулу для пути при равноускоренном движении без начальной скорости:

Откуда следует выразить время, и подставить известные значения:

t = √(2*S/a) = √(2*1/4,162) ≈ 0,7 с

Таким образом, время движения по наклонной плоскости бруска составит меньше секунды. Заметим, что полученный результат от массы тела не зависит.

Задача со скатывающимся по плоскости цилиндром

Цилиндр радиусом 20 см и массой 1 кг помещен на наклонную под углом 30 o плоскость. Следует вычислить его максимальную линейную скорость, которую он наберет при скатывании с плоскости, если ее длина составляет 1,5 метра.

Запишем соответствующие уравнения:

m*g*sin(φ) - F r = m*a;

F r *r = I*α = I*a/r

Момент инерции I цилиндра вычисляется по формуле:

Подставим это значение во вторую формулу, выразим из нее силу трения F r и заменим полученным выражением ее в первом уравнении, имеем:

F r *r = 1/2*m*r 2 *a/r = >

m*g*sin(φ) - 1/2*m*a = m*a =>

a = 2/3*g*sin(φ)

Мы получили, что линейное ускорение не зависит от радиуса и массы скатывающегося с плоскости тела.

Зная, что длина плоскости составляет 1,5 метра, найдем время движения тела:

Тогда максимальная скорость движения по наклонной плоскости цилиндра будет равна:

v = a*t = a*√(2*S/a) = √(2*S*a) = √(4/3*S*g*sin(φ))

Подставляем все известные из условия задачи величины в конечную формулу, получаем ответ: v ≈ 3,132 м/c.

Проецирование сил. Движение по наклонной плоскости

Задачи по динамике.

I и II закон Ньютона.

Ввод и направление осей.

Неколлинеарные силы.

Проецирование сил на оси.

Решение систем уравнений.

Самые типовые задачи по динамике

Начнем с I и II законов Ньютона.

Откроем учебник физики и прочтем. I закон Ньютона: существуют такие инерциальные системы отсчета в которых... Закроем такой учебник, я тоже не понимаю. Ладно шучу, понимаю, но объясню проще.

I закон Ньютона: если тело стоит на месте либо движется равномерно (без ускорения), сумма действующих на него сил равна нулю.

Вывод: Если тело движется с постоянной скоростью или стоит на месте векторная сумма сил будет ноль.

II закон Ньютона: если тело движется равноускоренно или равнозамедленно (с ускорением), сумма сил, действующих на него, равна произведению массы на ускорение.

Вывод: Если тело двигается с изменяющейся скоростью, то векторная сумма сил, которые как-то влияют на это тело (сила тяги, сила трения, сила сопротивления воздуха), равна массе этого тело умножить на ускорение.

При этом одно и то же тело чаще всего движется по-разному (равномерно или с ускорением) в разных осях. Рассмотрим именно такой пример.

Задача 1. Определите коэффициент трения шин автомобиля массой 600 кг, если сила тяги двигателя 4500 Н вызывает ускорение 5 м/с².

Обязательно в таких задачах делать рисунок, и показывать силы, которые дествуют на машину:


На Ось Х: движение с ускорением

На Ось Y: нет движения (здесь координата, как была ноль так и останется, машина не поднимает в горы или спускается вниз)

Те силы, направление которых совпадает с направлением осей, будут с плюсом, в противоположном случае - с минусом.

По оси X: сила тяги направлена вправо, так же как и ось X, ускорение так же направлено вправо.

Fтр = μN, где N - сила реакции опоры. На оси Y: N = mg, тогда в данной задаче Fтр = μmg.

Получаем, что:

Коэффициент трения - безразмерная величина. Следовательно, единиц измерения нет.

Ответ: 0,25

Задача 2. Груз массой 5кг, привязанный к невесомой нерастяжимой нити, поднимают вверх с ускорением 3м/с². Определите силу натяжения нити.

Сделаем рисунок, покажем силы, которые дествуют на груз

T - сила натяжения нити

На ось X: нет сил

Разберемся с направлением сил на ось Y:

Выразим T (силу натяжения) и подставим числительные значения:

Ответ: 65 Н

Самое главное не запутаться с направлением сил (по оси или против), все остальное сделает калькулятор или всеми любимый столбик.

Далеко не всегда все силы, действующие на тело, направлены вдоль осей.

Простой пример: мальчик тянет санки

Если мы так же построим оси X и Y, то сила натяжения (тяги) не будет лежать ни на одной из осей.

Чтобы спроецировать силу тяги на оси, вспомним прямоугольный треугольник.

Отношение противолежащего катета к гипотенузе - это синус.

Отношение прилежащего катета к гипотенузе - это косинус.

Сила тяги на ось Y - отрезок (вектор) BC.

Сила тяги на ось X - отрезок (вектор) AC.

Если это непонятно, посмотрите задачу №4.

Чем длинее будет верека и, соответсвенно, меньше угол α, тем проще будет тянуть санки. Идеальный вариант, когда веревка параллельна земле , ведь сила, которая действуют на ось X- это Fнcosα. При каком угле косинус максимален? Чем больше будет этот катет, тем сильнее горизонтальная сила.

Задача 3. Брусок подвешен на двух нитях. Сила натяжения первой составляет 34 Н, второй - 21Н, θ1 = 45°, θ2 = 60°. Найдите массу бруска.

Введем оси и спроецируем силы:

Получаем два прямоугольных треугольника. Гипотенузы AB и KL - силы натяжения. LM и BC - проекции на ось X, AC и KM - на ось Y.

Ответ: 4,22 кг

Задача 4. Брусок массой 5 кг (масса в этой задаче не нужна, но, чтобы в уравнениях все было известно, возьмем конкретное значение) соскальзывает с плоскости, которая наклонена под углом 45°, с коэффициентом трения μ = 0,1. Найдите ускорение движения бруска?

Когда же есть наклонная плоскость, оси (X и Y) лучше всего направить по направлению движения тела. Некоторые силы в данном случае (здесь это mg) не будут лежать ни на одной из осей. Эту силу нужно спроецировать, чтобы она имела такое же направление, как и взятые оси.
Всегда ΔABC подобен ΔKOM в таких задачах (по прямому углу и углу наклона плоскости).

Рассмотрим поподробнее ΔKOM:

Получим, что KO лежит на оси Y, и проекция mg на ось Y будет с косинусом. А вектор MK коллинеарен (параллелен) оси X, проекция mg на ось X будет с синусом, и вектор МК направлен против оси X (то есть будет с минусом).

Не забываем, что, если направления оси и силы не совпадают, ее нужно взять с минусом!

Из оси Y выражаем N и подставляем в уравнение оси X, находим ускорение:

Ответ: 6,36 м/с²

Как видно, массу в числителе можно вынести за скобки и сократить со знаменаталем. Тогда знать ее не обязательно, получить ответ реально и без нее.
Да-да, в идеальных условиях (когда нет силы сопротивления воздуха и т.п.), что перо, что гиря скатятся (упадут) за одно и тоже время.

Задача 5. Автобус съезжает с горки под уклоном 60° с ускорением 8 м/с² и с силой тяги 8 кН. Коэффициент трения шин об асфальт равен 0,4. Найдите массу автобуса.

Сделаем рисунок с силами:

Введем оси X и Y. Спроецируем mg на оси:


Запишем второй закон Ньютона на X и Y:

Ответ: 6000 кг

Задача 6. Поезд движется по закруглению радиуса 800 м со скоростью 72 км/ч. Определить, на сколько внешний рельс должен быть выше внутреннего. Расстояние между рельсами 1,5 м.

Самое сложное - понять, какие силы куда действуют, и как угол влияет на них.

Вспомни, когда едешь по кругу на машине или в автобусе, куда тебя выталкивает? Для этого и нужен наклон, чтобы поезд не упал набок!

Угол α задает отношение разницы высоты рельсов к расстоянию между ними (если бы рельсы находились горизонтально)

Запишем какие силы действуют на оси:

Ускорение в данной задачи центростремительное!

Поделим одно уравнение на другое:

Тангенс - это отношение противолежащего катета к прилежащему:

Ответ: 7,5 см

Как мы выяснили, решение подобных задач сводится к расстановке направлений сил, проецированию их на оси и к решению систем уравнений, почти сущий пустяк.

В качестве закрепления материала решите несколько похожих задач с подсказками и ответами.

Движение. Теплота Китайгородский Александр Исаакович

Наклонная плоскость

Наклонная плоскость

Крутой подъем труднее преодолеть, чем отлогий. Легче вкатить тело на высоту по наклонной плоскости, чем поднимать его по вертикали. Почему так и насколько легче? Закон сложения сил позволяет нам разобраться в этих вопросах.

На рис. 12 показана тележка на колесах, которая натяжением веревки удерживается на наклонной плоскости. Кроме тяги на тележку действуют еще две силы – вес и сила реакции опоры, действующая всегда по нормали к поверхности, вне зависимости от того, горизонтальная поверхность опоры или наклонная.

Как уже говорилось, если тело давит на опору, то опора противодействует давлению или, как говорят, создает силу реакции.

Нас интересует, в какой степени тащить тележку вверх легче по наклонной плоскости, чем поднимать вертикально.

Разложим силы так, чтобы одна была направлена вдоль, а другая – перпендикулярно к поверхности, по которой движется тело. Для того чтобы тело покоилось на наклонной плоскости, сила натяжения веревки должна уравновешивать лишь продольную составляющую. Что же касается второй составляющей, то она уравновешивается реакцией опоры.

Найти интересующую нас силу натяжения каната T можно или геометрическим построением или при помощи тригонометрии. Геометрическое построение состоит в проведении из конца вектора веса P перпендикуляра к плоскости.

На рисунке можно отыскать два подобных треугольника. Отношение длины наклонной плоскости l к высоте h равно отношению соответствующих сторон в треугольнике сил. Итак,

Чем более отлога наклонная плоскость (h /l невелико), тем, разумеется, легче тащить тело вверх.

А теперь для тех, кто знает тригонометрию: так как угол между поперечной составляющей веса и вектором веса равен углу? наклонной плоскости (это углы со взаимно перпендикулярными сторонами), то

Итак, вкатить тележку по наклонной плоскости с углом? в sin ? раз легче, чем поднять ее вертикально.

Полезно помнить значения тригонометрических функций для углов 30, 45 и 60°. Зная эти цифры для синуса (sin 30° = 1/2; sin 45° = sqrt(2)/2;*5 sin 60° = sqrt(3)/2), мы получим хорошее представление о выигрыше в силе при движении по наклонной плоскости.

Из формул видно, что при угле наклонной плоскости в 30° наши усилия составят половину веса: T = P ·(1/2). При углах 45° и 60° придется тянуть канат с силами, равными примерно 0,7 и 0,9 от веса тележки. Как видим, такие крутые наклонные плоскости мало облегчают дело.

На наклонной плоскости длиной 13 м и высотой 5 м лежит груз массой 26 кг. Коэффициент трения равен 0,5. Какую силу надо приложить к грузу вдоль плоскости, чтобы втащить груз? чтобы стащить груз
РЕШЕНИЕ

Какую силу надо приложить для подъема вагонетки массой 600 кг по эстакаде с углом наклона 20°, если коэффициент сопротивления движению равен 0,05
РЕШЕНИЕ

При проведении лабораторной работы были получены следующие данные: длина наклонной плоскости 1 м, высота 20 см, масса деревянного бруска 200 г, сила тяги при движении бруска вверх 1 Н. Найти коэффициент трения
РЕШЕНИЕ

На наклонной плоскости длиной 50 см и высотой 10 см покоится брусок массой 2 кг. При помощи динамометра, расположенного параллельно плоскости, брусок сначала втащили вверх по наклонной плоскости, а затем стащили вниз. Найти разность показаний динамометра
РЕШЕНИЕ

Чтобы удерживать тележку на наклонной плоскости с углом наклона α, надо приложить силу F1 направленную вверх вдоль наклонной плоскости, а чтобы поднимать вверх, надо приложить силу F2. Найти коэффициент сопротивления
РЕШЕНИЕ

Наклонная плоскость расположена под углом α = 30° к горизонту. При каких значениях коэффициента трения μ тянуть по ней груз труднее, чем поднимать его вертикально
РЕШЕНИЕ

На наклонной плоскости длиной 5 м и высотой 3 м находится груз массой 50 кг. Какую силу, направленную вдоль плоскости, надо приложить, чтобы удержать этот груз? тянуть равномерно вверх? тянуть с ускорением 1 м/с2? Коэффициент трения 0,2
РЕШЕНИЕ

Автомобиль массой 4 т движется в гору с ускорением 0,2 м/с2. Найти силу тяги, если уклон равен 0,02 и коэффициент сопротивления 0,04
РЕШЕНИЕ

Поезд массой 3000 т движется вниз под уклон, равный 0,003. Коэффициент сопротивления движению равен 0,008. С каким ускорением движется поезд, если сила тяги локомотива равна: а) 300 кН; б) 150 кН; в) 90 кН
РЕШЕНИЕ

Мотоцикл массой 300 кг начал движение из состояния покоя на горизонтальном участке дороги. Затем дорога пошла под уклон, равный 0,02. Какую скорость приобрел мотоцикл через 10 с после начала движения, если горизонтальный участок дороги он проехал за половину этого времени? Сила тяги и коэффициент сопротивления движению на всем пути постоянны и соответственно равны 180 Н и 0,04
РЕШЕНИЕ

Брусок массой 2 кг находится на наклонной плоскости с углом наклона 30°. Какую силу, направленную горизонтально (рис. 39), надо приложить к бруску, чтобы он двигался равномерно по наклонной плоскости? Коэффициент трения бруска о наклонную плоскость равен 0,3
РЕШЕНИЕ

Поместите на линейке небольшой предмет (резинку, монету и т. д.). Постепенно поднимайте конец линейки, пока предмет не начнет скользить. Измерьте высоту h и основание b полученной наклонной плоскости и вычислите коэффициент трения
РЕШЕНИЕ

С каким ускорением а скользит брусок по наклонной плоскости с углом наклона α = 30° при коэффициенте трения μ = 0,2
РЕШЕНИЕ

В момент начала свободного падения первого тела с некоторой высоты h второе тело стало скользить без трения с наклонной плоскости, имеющей ту же высоту h и длину l = nh. Сравнить конечные скорости тел у основания наклонной плоскости и время их движения.