Окислительно – восстановительные реакции. Электроотрицательность

9.1. Какие бывают химические реакции

Вспомним, что химическими реакциями мы называем любые химические явления природы. При химической реакции происходит разрыв одних и образование других химических связей. В результате реакции из одних химических веществ получаются другие вещества (см. гл. 1).

Выполняя домашнее задание к § 2.5, вы познакомились с традиционным выделением из всего множества химических превращений реакций четырех основных типов, тогда же вы предложили и их названия: реакции соединения, разложения, замещения и обмена.

Примеры реакций соединения:

C + O 2 = CO 2 ; (1)
Na 2 O + CO 2 = Na 2 CO 3 ; (2)
NH 3 + CO 2 + H 2 O = NH 4 HCO 3 . (3)

Примеры реакций разложения:

2Ag 2 O 4Ag + O 2­ ; (4)
CaCO 3 CaO + CO 2­ ; (5)
(NH 4) 2 Cr 2 O 7 N 2­ + Cr 2 O 3 + 4H 2 O­ . (6)

Примеры реакций замещения:

CuSO 4 + Fe = FeSO 4 + Cu ; (7)
2NaI + Cl 2 = 2NaCl + I 2 ; (8)
CaCO 3 + SiO 2 = CaSiO 3 + CO 2­ . (9)

Реакции обмена – химические реакции, в которых исходные вещества как бы обмениваются своими составными частями.

Примеры реакций обмена:

Ba(OH) 2 + H 2 SO 4 = BaSO 4 + 2H 2 O; (10)
HCl + KNO 2 = KCl + HNO 2 ; (11)
AgNO 3 + NaCl = AgCl + NaNO 3 . (12)

Традиционная классификация химических реакций не охватывает все их разнообразие – кроме реакций четырех основных типов существует еще и множество более сложных реакций.
Выделение двух других типов химических реакций основано на участии в них двух важнейших нехимических частиц: электрона и протона.
При протекании некоторых реакций происходит полная или частичная передача электронов от одних атомов к другим. При этом степени окисления атомов элементов, входящих в состав исходных веществ, изменяются; из приведенных примеров это реакции 1, 4, 6, 7 и 8. Эти реакции называются окислительно-восстановительными .

В другой группе реакций от одной реагирующей частицы к другой переходит ион водорода (Н +), то есть протон. Такие реакции называют кислотно-основными реакциями или реакциями с передачей протона .

Среди приведенных примеров такими реакциями являются реакции 3, 10 и 11. По аналогии с этими реакциями окислительно-восстановительные реакции иногда называют реакциями с передачей электрона . С ОВР вы познакомитесь в § 2, а с КОР – в следующих главах.

РЕАКЦИИ СОЕДИНЕНИЯ, РЕАКЦИИ РАЗЛОЖЕНИЯ, РЕАКЦИИ ЗАМЕЩЕНИЯ, РЕАКЦИИ ОБМЕНА, ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ, КИСЛОТНО-ОСНОВНЫЕ РЕАКЦИИ.
Составьте уравнения реакций, соответствующих следующим схемам:
а) HgO Hg + O 2 (t ); б) Li 2 O + SO 2 Li 2 SO 3 ; в) Cu(OH) 2 CuO + H 2 O (t );
г) Al + I 2 AlI 3 ; д) CuCl 2 + Fe FeCl 2 + Cu; е) Mg + H 3 PO 4 Мg 3 (PO 4) 2 + H 2 ;
ж) Al + O 2 Al 2 O 3 (t ); и) KClO 3 + P P 2 O 5 + KCl (t ); к) CuSO 4 + Al Al 2 (SO 4) 3 + Cu;
л) Fe + Cl 2 FeCl 3 (t ); м) NH 3 + O 2 N 2 + H 2 O (t ); н) H 2 SO 4 + CuO CuSO 4 + H 2 O.
Укажите традиционный тип реакции. Отметьте окислительно-восстановительные и кислотно-основные реакции. В окислительно-восстановительных реакциях укажите, атомы каких элементов меняют свои степени окисления.

9.2. Окислительно-восстановительные реакции

Рассмотрим окислительно-восстановительную реакцию, протекающую в доменных печах при промышленном получении железа (точнее, чугуна) из железной руды:

Fe 2 O 3 + 3CO = 2Fe + 3CO 2 .

Определим степени окисления атомов, входящих в состав как исходных веществ, так и продуктов реакции

Fe 2 O 3 + = 2Fe +

Как видите, степень окисления атомов углерода в результате реакции увеличилась, степень окисления атомов железа уменьшилась, а степень окисления атомов кислорода осталась неизменной. Следовательно, атомы углерода в этой реакции подверглись окислению, то есть потеряли электроны (окислились ), а атомы железа – восстановлению, то есть присоединили электроны (восстановились ) (см. § 7.16). Для характеристики ОВР используют понятия окислитель и восстановитель .

Таким образом, в нашей реакции атомами-окислителями являются атомы железа, а атомами-восстановителями – атомы углерода.

В нашей реакции веществом-окислителем является оксид железа(III), а веществом-восстановителем – оксид углерода(II).
В тех случаях, когда атомы-окислители и атомы-восстановители входят в состав одного и того же вещества (пример: реакция 6 из предыдущего параграфа), понятия " вещество-окислитель" и " вещество-восстановитель" не используются.
Таким образом, типичными окислителями являются вещества, в состав которых входят атомы, склонные присоединять электроны (полностью или частично), понижая свою степень окисления. Из простых веществ это прежде всего галогены и кислород, в меньшей степени сера и азот. Из сложных веществ – вещества, в состав которых входят атомы в высших степенях окисления, не склонные в этих степенях окисления образовывать простые ионы: HNO 3 (N +V), KMnO 4 (Mn +VII), CrO 3 (Cr +VI), KClO 3 (Cl +V), KClO 4 (Cl +VII) и др.
Типичными восстановителями являются вещества, в состав которых входят атомы, склонные полностью или частично отдавать электроны, повышая свою степень окисления. Из простых веществ это водород, щелочные и щелочноземельные металлы, а также алюминий. Из сложных веществ – H 2 S и сульфиды (S –II), SO 2 и сульфиты (S +IV), йодиды (I –I), CO (C +II), NH 3 (N –III) и др.
В общем случае почти все сложные и многие простые вещества могут проявлять как окислительные, так и восстановительные свойства. Например:
SO 2 + Cl 2 = S + Cl 2 O 2 (SO 2 – сильный восстановитель);
SO 2 + C = S + CO 2 (t) (SO 2 – слабый окислитель);
C + O 2 = CO 2 (t) (C – восстановитель);
C + 2Ca = Ca 2 C (t) (С – окислитель).
Вернемся к реакции, разобранной нами в начале этого параграфа.

Fe 2 O 3 + = 2Fe +

Обратите внимание, что в результате реакции атомы-окислители (Fe +III) превратились в атомы-восстановители (Fe 0), а атомы-восстановители (C +II) превратились в атомы-окислители (C +IV). Но CO 2 в любых условиях очень слабый окислитель, а железо, хоть и является восстановителем, но в данных условиях значительно более слабым, чем CO. Поэтому продукты реакции не реагируют друг с другом, и обратная реакция не протекает. Приведенный пример является иллюстрацией общего принципа, определяющего направление протекания ОВР:

Окислительно-восстановительные реакции протекают в направлении образования более слабого окислителя и более слабого восстановителя.

Окислительно-восстановительные свойства веществ можно сравнивать только в одинаковых условиях. В некоторых случаях это сравнение может быть проведено количественно.
Выполняя домашнее задание к первому параграфу этой главы, вы убедились, что подобрать коэффициенты в некоторых уравнениях реакций (особенно ОВР) довольно сложно. Для упрощения этой задачи в случае окислительно-восстановительных реакций используют следующие два метода:
а) метод электронного баланса и
б) метод электронно-ионного баланса .
Метод электронного баланса вы изучите сейчас, а метод электронно-ионного баланса обычно изучается в высших учебных заведениях.
Оба эти метода основаны на том, что электроны в химических реакциях никуда не исчезают и ниоткуда не появляются, то есть число принятых атомами электронов равно числу электронов, отданных другими атомами.
Число отданных и принятых электронов в методе электронного баланса определяется по изменению степени окисления атомов. При использовании этого метода необходимо знать состав как исходных веществ, так и продуктов реакции.
Рассмотрим применение метода электронного баланса на примерах.

Пример 1. Составим уравнение реакции железа с хлором. Известно, что продуктом такой реакции является хлорид железа(III). Запишем схему реакции:

Fe + Cl 2 FeCl 3 .

Определим степени окисления атомов всех элементов, входящих в состав веществ, участвующих в реакции:

Атомы железа отдают электроны, а молекулы хлора их принимают. Выразим эти процессы электронными уравнениями :
Fe – 3e – = Fe +III ,
Cl 2 + 2e – = 2Cl –I .

Чтобы число отданных электронов было равно числу принятых, надо первое электронное уравнение умножить на два, а второе – на три:

Fe – 3e – = Fe +III ,
Cl 2 + 2e – = 2Cl –I
2Fe – 6e – = 2Fe +III ,
3Cl 2 + 6e – = 6Cl –I .

Введя коэффициенты 2 и 3 в схему реакции, получаем уравнение реакции:
2Fe + 3Cl 2 = 2FeCl 3 .

Пример 2. Составим уравнение реакции горения белого фосфора в избытке хлора. Известно, что в этих условиях образуется хлорид фосфора(V):

+V –I
P 4 + Cl 2 PCl 5 .

Молекулы белого фосфора отдают электроны (окисляются), а молекулы хлора их принимают (восстанавливаются):

P 4 – 20e – = 4P +V
Cl 2 + 2e – = 2Cl –I
1
10
2
20
P 4 – 20e – = 4P +V
Cl 2 + 2e – = 2Cl –I
P 4 – 20e – = 4P +V
10Cl 2 + 20e – = 20Cl –I

Полученные первоначально множители (2 и 20) имели общий делитель, на который (как будущие коэффициенты в уравнении реакции) и были разделены. Уравнение реакции:

P 4 + 10Cl 2 = 4PCl 5 .

Пример 3. Составим уравнение реакции, протекающей при обжиге сульфида железа(II) в кислороде.

Схема реакции:

+III –II +IV –II
+ O 2 +

В этом случае окисляются и атомы железа(II), и атомы серы(– II). В состав сульфида железа(II) атомы этих элементов входят в отношении 1:1 (см. индексы в простейшей формуле).
Электронный баланс:

4 Fe +II – e – = Fe +III
S –II – 6e – = S +IV
Всего отдают 7е
7 O 2 + 4e – = 2O –II

Уравнение реакции: 4FeS + 7O 2 = 2Fe 2 O 3 + 4SO 2 .

Пример 4 . Составим уравнение реакции, протекающей при обжиге дисульфида железа(II) (пирита) в кислороде.

Схема реакции:

+III –II +IV –II
+ O 2 +

Как и в предыдущем примере, здесь тоже окисляются и атомы железа(II), и атомы серы, но со степенью окисления – I. В состав пирита атомы этих элементов входят в отношении 1:2 (см. индексы в простейшей формуле). Именно в этом отношении атомы железа и серы вступают в реакцию, что и учитывается при составлении электронного баланса:

Fe +III – e – = Fe +III
2S –I – 10e – = 2S +IV
Всего отдают 11е
O 2 + 4e – = 2O –II

Уравнение реакции: 4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 .

Встречаются и более сложные случаи ОВР, с некоторыми из них вы познакомитесь, выполняя домашнее задание.

АТОМ-ОКИСЛИТЕЛЬ, АТОМ-ВОССТАНОВИТЕЛЬ, ВЕЩЕСТВО-ОКИСЛИТЕЛЬ, ВЕЩЕСТВО-ВОССТАНОВИТЕЛЬ, МЕТОД ЭЛЕКТРОННОГО БАЛАНСА, ЭЛЕКТРОННЫЕ УРАВНЕНИЯ.
1.Составьте электронный баланс к каждому уравнению ОВР, приведенному в тексте § 1 этой главы.
2.Составьте уравнения ОВР, обнаруженных вами при выполнении задания к § 1 этой главы. На этот раз для расстановки коэффициентов используйте метод электронного баланса. 3.Используя метод электронного баланса, составьте уравнения реакций, соответствующие следующим схемам: а) Na + I 2 NaI;
б) Na + O 2 Na 2 O 2 ;
в) Na 2 O 2 + Na Na 2 O;
г) Al + Br 2 AlBr 3 ;
д) Fe + O 2 Fe 3 O 4 (t );
е) Fe 3 O 4 + H 2 FeO + H 2 O (t );
ж) FeO + O 2 Fe 2 O 3 (t );
и) Fe 2 O 3 + CO Fe + CO 2 (t );
к) Cr + O 2 Cr 2 O 3 (t );
л) CrO 3 + NH 3 Cr 2 O 3 + H 2 O + N 2 (t );
м) Mn 2 O 7 + NH 3 MnO 2 + N 2 + H 2 O;
н) MnO 2 + H 2 Mn + H 2 O (t );
п) MnS + O 2 MnO 2 + SO 2 (t )
р) PbO 2 + CO Pb + CO 2 (t );
с) Cu 2 O + Cu 2 S Cu + SO 2 (t );
т) CuS + O 2 Cu 2 O +SO 2 (t );
у) Pb 3 O 4 + H 2 Pb + H 2 O (t ).

9.3. Экзотермические реакции. Энтальпия

Почему происходят химические реакции?
Для ответа на этот вопрос вспомним, почему отдельные атомы объединяются в молекулы, почему из изолированных ионов образуется ионный кристалл, почему при образовании электронной оболочки атома действует принцип наименьшей энергии. Ответ на все эти вопросы один и тот же: потому, что это энергетически выгодно. Это значит, что при протекании таких процессов выделяется энергия. Казалось бы, что и химические реакции должны протекать по этой же причине. Действительно, можно провести множество реакций, при протекании которых выделяется энергия. Энергия выделяется, как правило, в виде теплоты.

Если при экзотермической реакции теплота не успевает отводиться, то реакционная система нагревается.
Например, в реакции горения метана

СН 4(г) + 2О 2(г) = СО 2(г) + 2Н 2 О (г)

выделяется столько теплоты, что метан используется как топливо.
Тот факт, что в этой реакции выделяется теплота, можно отразить в уравнении реакции:

СН 4(г) + 2О 2(г) = СО 2(г) + 2Н 2 О (г) + Q.

Это так называемое термохимическое уравнение . Здесь символ "+Q " означает, что при сжигании метана выделяется теплота. Эта теплота называется тепловым эффектом реакции .
Откуда же берется выделяющаяся теплота?
Вы знаете, что при химических реакциях рвутся и образуются химические связи. В данном случае рвутся связи между атомами углерода и водорода в молекулах СН 4 , а также между атомами кислорода в молекулах О 2 . При этом образуются новые связи: между атомами углерода и кислорода в молекулах СО 2 и между атомами кислорода и водорода в молекулах Н 2 О. Для разрыва связей нужно затратить энергию (см. "энергия связи" , "энергия атомизации"), а при образовании связей энергия выделяется. Очевидно, что, если "новые" связи более прочные, чем "старые" , то энергии выделится больше, чем поглотится. Разность между выделившейся и поглощенной энергией и составляет тепловой эффект реакции.
Тепловой эффект (количество теплоты) измеряется в килоджоулях, например:

2Н 2(г) + О 2(г) = 2Н 2 О (г) + 484 кДж.

Такая запись означает, что 484 килоджоуля теплоты выделится, если два моля водорода прореагируют с одним молем кислорода и при этом образуется два моля газообразной воды (водяного пара).

Таким образом, в термохимических уравнениях коэффициенты численно равны количествам вещества реагентов и продуктов реакции .

От чего зависит тепловой эффект каждой конкретной реакции?
Тепловой эффект реакции зависит
а) от агрегатных состояний исходных веществ и продуктов реакции,
б) от температуры и
в) от того, происходит ли химическое превращение при постоянном объеме или при постоянном давлении.
Зависимость теплового эффекта реакции от агрегатного состояния веществ связана с тем, что процессы перехода из одного агрегатного состояния в другое (как и некоторые другие физические процессы) сопровождаются выделением или поглощением теплоты. Это также может быть выражено термохимическим уравнением. Пример – термохимическое уравнение конденсации водяного пара:

Н 2 О (г) = Н 2 О (ж) + Q.

В термохимических уравнениях, а при необходимости и в обычных химических уравнениях, агрегатные состояния веществ указываются с помощью буквенных индексов:
(г) – газ,
(ж) – жидкость,
(т) или (кр) – твердое или кристаллическое вещество.
Зависимость теплового эффекта от температуры связана с различиями в теплоемкостях исходных веществ и продуктов реакции.
Так как в результате экзотермической реакции при постоянном давлении всегда увеличивается объем системы, то часть энергии уходит на совершение работы по увеличению объема, и выделяющаяся теплота будет меньше, чем в случае протекания той же реакции при постоянном объеме.
Тепловые эффекты реакций обычно рассчитывают для реакций, протекающих при постоянном объеме при 25 ° С и обозначают символом Q o .
Если энергия выделяется только в виде теплоты, а химическая реакция протекает при постоянном объеме, то тепловой эффект реакции (Q V ) равен изменению внутренней энергии (D U ) веществ-участников реакции, но с противоположным знаком:

Q V = – U .

Под внутренней энергией тела понимают суммарную энергию межмолекулярных взаимодействий, химических связей, энергию ионизации всех электронов, энергию связей нуклонов в ядрах и все прочие известные и неизвестные виды энергии, " запасенные" этим телом. Знак " – " обусловлен тем, что при выделении теплоты внутренняя энергия уменьшается. То есть

U = – Q V .

Если же реакция протекает при постоянном давлении, то объем системы может изменяться. На совершение работы по увеличению объема также уходит часть внутренней энергии. В этом случае

U = – (Q P + A ) = –(Q P + P V ),

где Q p – тепловой эффект реакции, протекающей при постоянном давлении. Отсюда

Q P = – U – P V .

Величина, равная U + P V получила название изменение энтальпии и обозначается D H .

H = U + P V .

Следовательно

Q P = – H .

Таким образом, при выделении теплоты энтальпия системы уменьшается. Отсюда старое название этой величины: " теплосодержание" .
В отличие от теплового эффекта, изменение энтальпии характеризует реакцию независимо от того, протекает она при постоянном объеме или постоянном давлении. Термохимические уравнения, записанные с использованием изменения энтальпии, называются термохимическими уравнениями в термодинамической форме . При этом приводится значение изменения энтальпии в стандартных условиях (25 °С, 101,3 кПа), обозначаемое H о . Например:
2Н 2(г) + О 2(г) = 2Н 2 О (г) H о = – 484 кДж;
CaO (кр) + H 2 O (ж) = Сa(OH) 2(кр) H о = – 65 кДж.

Зависимость количества теплоты, выделяющейся в реакции (Q ) от теплового эффекта реакции (Q o) и количества вещества (n Б) одного из участников реакции (вещества Б – исходного вещества или продукта реакции) выражается уравнением:

Здесь Б – количество вещества Б, задаваемое коэффициентом перед формулой вещества Б в термохимическом уравнении.

Задача

Определите количество вещества водорода, сгоревшего в кислороде, если при этом выделилось 1694 кДж теплоты.

Решение

2Н 2(г) + О 2(г) = 2Н 2 О (г) + 484 кДж.

Q = 1694 кДж, 6.Тепловой эффект реакции взаимодействия кристаллического алюминия с газообразным хлором равен 1408 кДж. Запишите термохимическое уравнение этой реакции и определите массу алюминия, необходимого для получения 2816 кДж теплоты с использованием этой реакции.
7.Определите количество теплоты, выделяющейся при сгорании на воздухе 1 кг угля, содержащего 90 % графита, если тепловой эффект реакции горения графита в кислороде равна 394 кДж.

9.4. Эндотермические реакции. Энтропия

Кроме экзотермических реакций возможны реакции, при протекании которых теплота поглощается, и, если ее не подводить, то реакционная система охлаждается. Такие реакции называют эндотермическими .

Тепловой эффект таких реакций отрицательный. Например:
CaCO 3(кр) = CaO (кр) +CO 2(г) – Q,
2HgO (кр) = 2Hg (ж) + O 2(г) – Q,
2AgBr (кр) = 2Ag (кр) + Br 2(г) – Q.

Таким образом, энергия, выделяющаяся при образовании связей в продуктах этих и им подобных реакций, меньше, чем энергия, необходимая для разрыва связей в исходных веществах.
Что же является причиной протекания таких реакций, ведь энергетически они невыгодны?
Раз такие реакции возможны, значит существует какой-то неизвестный нам фактор, являющийся причиной их протекания. Попробуем его обнаружить.

Возьмем две колбы и заполним одну из них азотом (бесцветный газ), а другую – диоксидом азота (бурый газ) так, чтобы и давление, и температура в колбах были одинаковыми. Известно, что эти вещества между собой не вступают в химическую реакцию. Герметично соединим колбы горлышками и установим их вертикально, так, чтобы колба с более тяжелым диоксидом азота была внизу (рис. 9.1). Через некоторое время мы увидим, что бурый диоксид азота постепенно распространяется в верхнюю колбу, а бесцветный азот проникает в нижнюю. В результате газы смешиваются, и окраска содержимого колб становится одинаковой.
Что же заставляет газы смешиваться?
Хаотическое тепловое движение молекул.
Приведенный опыт показывает, что самопроизвольно, без какого бы то ни было нашего (внешнего) воздействия может протекать процесс, тепловой эффект которого равен нулю. А он действительно равен нулю, потому что химического взаимодействия в данном случае нет (химические связи не рвутся и не образуются), а межмолекулярное взаимодействие в газах ничтожно и практически одинаково.
Наблюдаемое явление представляет собой частный случай проявления всеобщего закона Природы, в соответствии с которым системы, состоящие из большого числа частиц, всегда стремятся к наибольшей неупорядоченности.
Мерой такой неупорядоченности служит физическая величина, называемая энтропией .

Таким образом,

чем БОЛЬШЕ ПОРЯДКА – тем МЕНЬШЕ ЭНТРОПИЯ,
чем МЕНЬШЕ ПОРЯДКА – тем БОЛЬШЕ ЭНТРОПИЯ.

Уравнения связи между энтропией (S ) и другими величинами изучаются в курсах физики и физической химии. Единица измерений энтропии [S ] = 1 Дж/К.
Энтропия возрастает при нагревании вещества и уменьшается при его охлаждении. Особенно сильно она возрастает при переходе вещества из твердого в жидкое и из жидкого в газообразное состояние.
Что же произошло в нашем опыте?
При смешении двух разных газов степень неупорядоченности возросла. Следовательно, возросла энтропия системы. При нулевом тепловом эффекте это и послужило причиной самопроизвольного протекания процесса.
Если теперь мы захотим разделить смешавшиеся газы, то нам придется совершить работу, то есть затратить для этого энергию. Самопроизвольно (за счет теплового движения) смешавшиеся газы никогда не разделятся!
Итак, мы с вами обнаружили два фактора, определяющих возможность протекания многих процессов, в том числе и химических реакций:
1) стремление системы к минимуму энергии (энергетический фактор ) и
2) стремление системы к максимуму энтропии (энтропийный фактор ).
Посмотрим теперь, как влияют на возможность протекания химических реакций различные комбинации этих двух факторов.
1. Если в результате предполагаемой реакции энергия продуктов реакции оказывается меньше, чем энергия исходных веществ, а энтропия больше (" под гору к большему беспорядку"), то такая реакция может протекать и будет экзотермической.
2. Если в результате предполагаемой реакции энергия продуктов реакции оказывается больше, чем энергия исходных веществ, а энтропия меньше (" в гору к большему порядку"), то такая реакция не идет.
3. Если в предполагаемой реакции энергетический и энтропийный факторы действуют в разные стороны (" под гору, но к большему порядку" или " в гору, но к большему беспорядку"), то без специальных расчетов сказать что-либо о возможности протекания такой реакции нельзя (" кто перетянет"). Подумайте, к какому из этих случаев относятся эндотермические реакции.
Возможность протекания химической реакции можно оценить, рассчитав изменение в ходе реакции физической величины, зависящей как от изменения энтальпии, так и от изменения энтропии в этой реакции. Такая физическая величина называется энергией Гиббса (в честь американского физикохимика XIX в. Джозайя Уилларда Гиббса).

G = H – T S

Условие самопроизвольного протекания реакции:

G < 0.

При низких температурах фактором, определяющим возможность протекания реакции в большей степени является энергетический фактор, а при высокой – энтропийный. Из приведенного уравнения, в частности, видно, почему не протекающие при комнатной температуре реакции разложения (энтропия увеличивается) начинают идти при повышенной температуре.

ЭНДОТЕРМИЧЕСКАЯ РЕАКЦИЯ, ЭНТРОПИЯ, ЭНЕРГЕТИЧЕСКИЙ ФАКТОР, ЭНТРОПИЙНЫЙ ФАКТОР, ЭНЕРГИЯ ГИББСА.
1.Приведите примеры известных вам эндотермических процессов.
2.Почему энтропия кристалла хлорида натрия меньше, чем энтропия расплава, полученного из этого кристалла?
3.Тепловой эффект реакции восстановления меди из ее оксида углем

2CuO (кр) + C (графит) = 2Cu (кр) + CO 2(г)

составляет –46 кДж. Запишите термохимическое уравнение и рассчитайте, какую энергию нужно затратить для получения 1 кг меди по такой реакции.
4.При прокаливании карбоната кальция было затрачено 300 кДж теплоты. При этом по реакции

CaCO 3(кр) = CaO (кр) + CO 2(г) – 179кДж

образовалось 24,6 л углекислого газа. Определите, какое количество теплоты было израсходовано бесполезно. Сколько граммов оксида кальция при этом образовалось?
5.При прокаливании нитрата магния образуется оксид магния, газообразный диоксид азота и кислород. Тепловой эффект реакции равен –510 кДж. Составьте термохимическое уравнение и определите, какое количество теплоты поглотилось, если выделилось 4,48 л кислорода. Какова масса разложившегося нитрата магния?

Существует два типа химических реакций:

A Реакции, в которых не изменяется степень окисления элементов:

Реакции присоединения

SO 2 + Na 2 O = Na 2 SO 3

Реакции разложения

Cu(OH) 2 = CuO + H 2 O

Реакции обмена

AgNO 3 + KCl = AgCl + KNO 3

NaOH + HNO 3 = NaNO 3 + H 2 O

B Реакции, в которых происходит изменение степеней окисления атомов элементов, входящих в состав реагирующих соединений и передача электронов от одних соединений к другим:

2Mg 0 + O 2 0 = 2Mg +2 O -2

2KI -1 + Cl 2 0 = 2KCl -1 + I 2 0

Mn +4 O 2 + 4HCl -1 = Mn +2 Cl 2 + Cl 2 0 + 2H 2 O

Такие реакции называются окислительно - восстановительными.

Степень окисления - это условный заряд атома в молекуле, вычисленный в предположении, что молекула состоит из ионов и в целом электронейтральна.

Наиболее электроотрицательные элементы в соединении имеют отрицательные степени окисления, а атомы элементов с меньшей электроотрицательностью - положительные.

Степень окисления - формальное понятие; в ряде случаев степень окисления не совпадает с валентностью.

Например :

N 2 H 4 (гидразин)

степень окисления азота – -2; валентность азота – 3.

Расчет степени окисления

Для вычисления степени окисления элемента следует учитывать следующие положения:

1. Степени окисления атомов в простых веществах равны нулю (Na 0 ; H 2 0).

2. Алгебраическая сумма степеней окисления всех атомов, входящих в состав молекулы, всегда равна нулю, а в сложном ионе эта сумма равна заряду иона.

3. Постоянную степень окисления в соединениях с атомами других элементов имеют атомы: щелочных металлов (+1), щелочноземельных металлов (+2), фтора

(-1), водорода (+1) (кроме гидридов металлов Na + H - , Ca 2+ H 2 - и др., где степень окисления водорода -1), кислорода (-2) (кроме F 2 -1 O +2 и пероксидов, содержащих группу –O–O–, в которой степень окисления кислорода -1).

4. Для элементов положительная степень окисления не может превышать величину, равную номеру группы периодической системы.

Примеры :

V 2 +5 O 5 -2 ; Na 2 +1 B 4 +3 O 7 -2 ; K +1 Cl +7 O 4 -2 ; N -3 H 3 +1 ; K 2 +1 H +1 P +5 O 4 -2 ; Na 2 +1 Cr 2 +6 O 7 -2

Окисление, восстановление

В окислительно-восстановительных реакциях электроны от одних атомов, молекул или ионов переходят к другим. Процесс отдачи электронов - окисление. При окислении степень окисления повышается:

H 2 0 - 2ē = 2H + + 1/2О 2

S -2 - 2ē = S 0

Al 0 - 3ē = Al +3

Fe +2 - ē = Fe +3

2Br - - 2ē = Br 2 0

Процесс присоединения электронов - восстановление: При восстановлении степень окисления понижается.

Mn +4 + 2ē = Mn +2

S 0 + 2ē = S -2

Cr +6 +3ē = Cr +3

Cl 2 0 +2ē = 2Cl -

O 2 0 + 4ē = 2O -2

Атомы, молекулы или ионы, которые в данной реакции присоединяют электроны являются окислителями, а которые отдают электроны - восстановителями.

Окислитель в процессе реакции восстанавливается, восстановитель - окисляется.

Окислительно-восстановительные свойства вещества и степени окисления входящих в него атомов

Соединения, содержащие атомы элементов с максимальной степенью окисления, могут быть только окислителями за счет этих атомов, т.к. они уже отдали все свои валентные электроны и способны только принимать электроны. Максимальная степень окисления атома элемента равна номеру группы в периодической таблице, к которой относится данный элемент. Соединения, содержащие атомы элементов с минимальной степенью окисления могут служить только восстановителями, поскольку они способны лишь отдавать электроны, потому, что внешний энергетический уровень у таких атомов завершен восемью электронами. Минимальная степень окисления у атомов металлов равна 0, для неметаллов - (n–8) (где n- номер группы в периодической системе). Соединения, содержащие атомы элементов с промежуточной степенью окисления, могут быть и окислителями и восстановителями, в зависимости от партнера, с которым взаимодействуют и от условий реакции.

Важнейшие восстановители и окислители

Восстановители

Окись углерода (II) (CO).

Сероводород (H 2 S);

оксид серы (IV) (SO 2);

сернистая кислота H 2 SO 3 и ее соли.

Галогеноводородные кислоты и их соли.

Катионы металлов в низших степенях окисления: SnCl 2 , FeCl 2 , MnSO 4 , Cr 2 (SO4) 3 .

Азотистая кислота HNO 2 ;

аммиак NH 3 ;

гидразин NH 2 NH 2 ;

оксид азота(II) (NO).

Катод при электролизе.

Окислители

Галогены.

Перманганат калия(KMnO 4);

манганат калия (K 2 MnO 4);

оксид марганца (IV) (MnO 2).

Дихромат калия (K 2 Cr 2 O 7);

хромат калия (K 2 CrO 4).

Азотная кислота (HNO 3).

Серная кислота (H 2 SO 4) конц.

Оксид меди(II) (CuO);

оксид свинца(IV) (PbO 2);

оксид серебра (Ag 2 O);

пероксид водорода (H 2 O 2).

Хлорид железа(III) (FeCl 3).

Бертоллетова соль (KClO 3).

Анод при электролизе.

Установите соответствие между уравнением реакции и свойством элемента азота, которое он проявляет в этой реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 4221

Пояснение:

А) NH 4 HCO 3 – соль, в состав которой входит катион аммония NH 4 + . В катионе аммония азот всегда имеет степень окисления, равную -3. В результате реакции он превращается в аммиак NH 3 . Водород практически всегда (кроме его соединений с металлами) имеет степень окисления, равную +1. Поэтому, чтобы молекула аммиака была электронейтральной, азот должен иметь степень окисления, равную -3. Таким образом, изменения степени окисления азота не происходит, т.е. он не проявляет окислительно-восстановительных свойств.

Б) Как уже было показано выше, азот в аммиаке NH 3 имеет степень окисления -3. В результате реакции с CuO аммиак превращается в простое вещество N 2 . В любом простом веществе степень окисления элемента, которым оно образовано, равна нулю. Таким образом, атом азота теряет свой отрицательный заряд, а поскольку за отрицательный заряд отвечают электроны, это означает их потерю атомом азота в результате реакции. Элемент, который в результате реакции теряет часть своих электронов, называется восстановителем.

В) В результате реакции NH 3 со степенью окисления азота, равной -3, превращается в оксид азота NO. Кислород практически всегда имеет степень окисления, равную -2. Поэтому для того, чтобы молекула оксида азота была электронейтральной, атом азота должен иметь степень окисления +2. Это означает, что атом азота в результате реакции изменил свою степень окисления с -3 до +2. Это говорит о потере атомом азота 5 электронов. То есть азот, как и случает Б, является восстановителем.

Г) N 2 – простое вещество. Во всех простых веществах элемент, который их образует, имеет степень окисления, равную 0. В результате реакции азот превращается в нитрид лития Li3N. Единственная степень окисления щелочного металла, кроме нуля (степень окисления 0 бывает у любого элемента), равна +1. Таким образом, чтобы структурная единица Li3N была электронейтральной, азот должен иметь степень окисления, равную -3. Получается, что в результате реакции азот приобрел отрицательный заряд, что означает присоединение электронов. Азот в данной реакции окислитель.

Расчет степени окисления

Резюме

1. Формирование кадрового состава - одна из наиболее существенных областей работы менеджера по персоналу.

2. Для того чтобы обеспечить организацию необходимым кадровым ресурсом, важно разработать адекватную задачам ситуацию во внешней среде и технологию деятельности, структуру фирмы; рассчитать потребность в персонале.

3. Для разработки программ найма необходимо провести анализ кадровой ситуации в регионе, разработать процедуры привлечения и оценки кандидатов, провести адаптационные мероприятия по включению новых сотрудников в организацию.

Контрольные вопросы

  1. Какие группы факторов необходимо учесть при создании организационной структуры?
  2. Какие этапы проектирования организации могут быть выделены?
  3. Объясните понятие “качественная оценка потребности в персонале”.
  4. Охарактеризуйте понятие “дополнительная потребность в персонале”.
  5. С какой целью проводится анализ кадровой ситуации в регионе?
  6. С какой целью проводится анализ деятельности?
  7. Какие стадии анализа деятельности можно выделить?
  8. Объясните, что представляет собой профессиограмма?
  9. Какие факторы внешней среды влияют на процесс набора кандидатов?
  10. Охарактеризуйте источники внутреннего и внешнего найма.
  11. Как оценить качество набора?
  12. Какие методы используются при оценке кандидатов?
  13. Какие парадигмы конкурсного набора вы знаете?
  14. Назовите этапы адаптации сотрудника в организации.

Для вычисления степени окисления элемента следует учитывать следующие положения:

1. Степени окисления атомов в простых веществах равны нулю (Na 0 ; H 2 0).

2. Алгебраическая сумма степеней окисления всех атомов, входящих в состав молекулы, всегда равна нулю, а в сложном ионе эта сумма равна заряду иона.

3. Постоянную степень окисления имеют атомы: щелочных металлов (+1), щелочноземельных металлов (+2), водорода (+1) (кроме гидридов NaH, CaH 2 и др., где степень окисления водорода -1), кислорода (-2) (кроме F 2 -1 O +2 и пероксидов, содержащих группу–O–O–, в которой степень окисления кислорода -1).

4. Для элементов положительная степень окисления не может превышать величину, равную номеру группы периодической системы.

Примеры:

V 2 +5 O 5 -2 ; Na 2 +1 B 4 +3 O 7 -2 ; K +1 Cl +7 O 4 -2 ; N -3 H 3 +1 ; K 2 +1 H +1 P +5 O 4 -2 ; Na 2 +1 Cr 2 +6 O 7 -2

Существует два типа химических реакций:

A Реакции, в которых не изменяется степень окисления элементов:

Реакции присоединения

SO 2 + Na 2 O Na 2 SO 3

Реакции разложения

Cu(OH) 2 – t CuO + H 2 O

Реакции обмена

AgNO 3 + KCl AgCl + KNO 3

NaOH + HNO 3 NaNO 3 + H 2 O

B Реакции, в которых происходит изменение степеней окисления атомов элементов, входящих в состав реагирующих соединений:



2Mg 0 + O 2 0 2Mg +2 O -2

2KCl +5 O 3 -2 – t 2KCl -1 + 3O 2 0

2KI -1 + Cl 2 0 2KCl -1 + I 2 0

Mn +4 O 2 + 4HCl -1 Mn +2 Cl 2 + Cl 2 0 + 2H 2 O

Такие реакции называются окислительно - восстановительными.

По этому признаку различают окислительно-восстановительные реакции и реакции, протекающие без изменения степеней окисления химических элементов.

К ним относится множество реакций, в том числе все реакции замещения, а также те реакции соединения и разложения, в которых участвует хотя бы одно простое вещество, например:


Как вы помните, коэффициенты в сложных окислительно-восстановительных реакциях расставляют, используя метод электронного баланса:

В органической химии ярким примером окислительно-восстановительных реакций могут служить свойства альдегидов.

1. Они восстанавливаются в соответствующие спирты:

2. Альдегиды окисляются в соответствующие кислоты:


Сущность всех приведенных выше примеров окислительно-восстановительных реакций была представлена с помощью хорошо известного вам метода электронного баланса. Он основан на сравнении степеней окисления атомов в реагентах и продуктах реакции и на балансировании числа электронов в процессах окисления и восстановления. Этот метод применяют для составления уравнений реакций, протекающих в любых фазах. Этим он универсален и удобен. Но в то же время он имеет серьезный недостаток - при выражении сущности окислительно-восстановительных реакций, протекающих в растворах, указываются частицы, которые реально не существуют.

В этом случае удобнее использовать другой метод - метод полуреакций. Он основан на составлении ионноэлектронных уравнений для процессов окисления и восстановления с учетом реально существующих частиц и последующем суммировании их в общее уравнение. В этом методе не используют понятие «степень окисления», а продукты определяются при выводе уравнения реакции.

Продемонстрируем этот метод на примере: составим уравнение окислительно-восстановительной реакции цинка с концентрированной азотной кислотой.

1. Записываем ионную схему процесса, которая включает только восстановитель и продукт его окисления, окислитель и продукт его восстановления:

2. Составляем ионно-электронное уравнение процесса окисления (это 1-я полуреакция):

3. Составляем ионно-электронное уравнение процесса восстановления (это 2-я полуреакция):

Обратите внимание: электронно-ионные уравнения составляются в соответствии с законом сохранения массы и заряда.

4. Записываем уравнения полуреакций так, чтобы число электронов между восстановителем и окислителем было сбалансированно:

5. Суммируем почленно уравнения полуреакций. Составляем общее ионное уравнение реакции:

Проверяем правильность составления уравнения реакции в ионном виде:

  • Соблюдение равенства по числу атомов элементов и по числу зарядов
    1. Число атомов элементов должно быть равно в левой и правой частях ионного уравнения реакции.
    2. Общий заряд частиц в левой и правой частях ионного уравнения должен быть одинаков.

6. Записываем уравнение в молекулярной форме. Для этого добавляем к ионам, входящим в ионное уравнение, необходимое число ионов противоположного заряда:

Реакции, идущие без изменения степеней окисления химических элементов . К ним, например, относятся все реакции ионного обмена, а также многие реакции соединения, например:

многие реакции разложения:

реакции этерификации: